Ubiquitin carboxyl-terminal hydrolase 11 (USP11)

The protein contains 963 amino acids for an estimated molecular weight of 109817 Da.

 

Protease that can remove conjugated ubiquitin from target proteins and polyubiquitin chains (PubMed:12084015, PubMed:15314155, PubMed:17897950, PubMed:19874889, PubMed:20233726, PubMed:24724799). Inhibits the degradation of target proteins by the proteasome (PubMed:12084015). Cleaves preferentially 'Lys-6' and 'Lys-63'-linked ubiquitin chains. Has lower activity with 'Lys-11' and 'Lys-33'-linked ubiquitin chains, and extremely low activity with 'Lys-27', 'Lys-29' and 'Lys-48'-linked ubiquitin chains (in vitro) (PubMed:24724799). Plays a role in the regulation of pathways leading to NF-kappa-B activation (PubMed:17897950, PubMed:19874889). Plays a role in the regulation of DNA repair after double-stranded DNA breaks (PubMed:15314155, PubMed:20233726). Acts as a chromatin regulator via its association with the Polycomb group (PcG) multiprotein PRC1-like complex; may act by deubiquitinating components of the PRC1-like complex (PubMed:20601937). (updated: Oct. 25, 2017)

Protein identification was indicated in the following studies:

  1. Goodman and co-workers. (2013) The proteomics and interactomics of human erythrocytes. Exp Biol Med (Maywood) 238(5), 509-518.
  2. Lange and co-workers. (2014) Annotating N termini for the human proteome project: N termini and Nα-acetylation status differentiate stable cleaved protein species from degradation remnants in the human erythrocyte proteome. J Proteome Res. 13(4), 2028-2044.
  3. Hegedűs and co-workers. (2015) Inconsistencies in the red blood cell membrane proteome analysis: generation of a database for research and diagnostic applications. Database (Oxford) 1-8.
  4. D'Alessandro and co-workers. (2017) Red blood cell proteomics update: is there more to discover? Blood Transfus. 15(2), 182-187.

Methods

The following articles were analysed to gather the proteome content of erythrocytes.

The gene or protein list provided in the studies were processed using the ID mapping API of Uniprot in September 2018. The number of proteins identified and mapped without ambiguity in these studies is indicated below.
Only Swiss-Prot entries (reviewed) were considered for protein evidence assignation.

PublicationIdentification 1Uniprot mapping 2Not mapped /
Obsolete
TrEMBLSwiss-Prot
Goodman (2013)2289 (gene list)227853205992269
Lange (2014)123412347281224
Hegedus (2015)2638262202352387
Wilson (2016)165815281702911068
d'Alessandro (2017)18261817201815
Bryk (2017)20902060101081942
Chu (2018)18531804553621387

1 as available in the article and/or in supplementary material
2 uniprot mapping returns all protein isoforms as one entry

The compilation of older studies can be retrieved from the Red Blood Cell Collection database.

The data and differentiation stages presented below come from the proteomic study and analysis performed by our partners of the GReX consortium, more details are available in their published work.

No sequence conservation computed yet.

Interpro domains
Total structural coverage: 44%
Model score: 29

(right-click above to access to more options from the contextual menu)

The reference OMIM entry for this protein is 300050

Ubiquitin-specific protease 11; usp11
Ubiquitin carboxyl-terminal hydrolase, x-linked; uhx1

CLONING

Swanson et al. (1996) used a differential hybridization screen to isolate a novel cDNA, designated UHX1, from a human retina library. The cDNA encodes a protein of 690 amino acids that shows strong homology to the proteins encoded by a variety of ubiquitin hydrolases (p values ranging between 2.4e-265 and 1.4e-13).

GENE FUNCTION

Swanson et al. (1996) reviewed the role of ubiquitination in protein degradation and presented evidence that disturbances in protein processing and turnover can lead to retinal degeneration. They noted that there are at least 4 X-linked retinal diseases that map to a region within or overlapping the UHX1 interval (see

MAPPING

). They cited evidence indicating that ubiquitin hydrolases play a role in oncogenesis (oncogenes and tumor suppressor gene products are degraded in ubiquitin-dependent pathways) and that the region of loss of heterozygosity in ovarian cancer lies within the mapping interval defined for UHX1.

MAPPING

Swanson et al. (1996) mapped the structural gene encoding this cDNA, which they designated UHX1, to Xp21.2-p11.2 by somatic cell hybridization. By genomic sequence analysis, Stoddart et al. (1999) mapped the UHX1 gene to Xp11.3. ... More on the omim web site

Subscribe to this protein entry history

Feb. 10, 2018: Protein entry updated
Automatic update: Entry updated from uniprot information.

Feb. 2, 2018: Protein entry updated
Automatic update: Uniprot description updated

Dec. 19, 2017: Protein entry updated
Automatic update: Uniprot description updated

March 16, 2016: Protein entry updated
Automatic update: OMIM entry 300050 was added.

Sept. 16, 2015: Protein entry updated
Automatic update: model status changed