Golgi to ER traffic protein 4 homolog (GET4)

The protein contains 327 amino acids for an estimated molecular weight of 36504 Da.

 

As part of a cytosolic protein quality control complex, the BAG6/BAT3 complex, maintains misfolded and hydrophobic patches-containing proteins in a soluble state and participates in their proper delivery to the endoplasmic reticulum or alternatively can promote their sorting to the proteasome where they undergo degradation (PubMed:20676083, PubMed:21636303, PubMed:21743475, PubMed:28104892). The BAG6/BAT3 complex is involved in the post-translational delivery of tail-anchored/type II transmembrane proteins to the endoplasmic reticulum membrane. Recruited to ribosomes, it interacts with the transmembrane region of newly synthesized tail-anchored proteins and together with SGTA and ASNA1 mediates their delivery to the endoplasmic reticulum (PubMed:20676083, PubMed:28104892, PubMed:25535373). Client proteins that cannot be properly delivered to the endoplasmic reticulum are ubiquitinated and sorted to the proteasome (PubMed:28104892). Similarly, the BAG6/BAT3 complex also functions as a sorting platform for proteins of the secretory pathway that are mislocalized to the cytosol either delivering them to the proteasome for degradation or to the endoplasmic reticulum (PubMed:21743475). The BAG6/BAT3 complex also plays a role in the endoplasmic reticulum-associated degradation (ERAD), a quality control mechanism that eliminates unwanted proteins of the endoplasmic reticulum through their retrotranslocation to the cytosol and their targeting to the proteasome. It maintains these ret (updated: June 17, 2020)

Protein identification was indicated in the following studies:

  1. Goodman and co-workers. (2013) The proteomics and interactomics of human erythrocytes. Exp Biol Med (Maywood) 238(5), 509-518.
  2. Lange and co-workers. (2014) Annotating N termini for the human proteome project: N termini and Nα-acetylation status differentiate stable cleaved protein species from degradation remnants in the human erythrocyte proteome. J Proteome Res. 13(4), 2028-2044.
  3. Bryk and co-workers. (2017) Quantitative Analysis of Human Red Blood Cell Proteome. J Proteome Res. 16(8), 2752-2761.

Methods

The following articles were analysed to gather the proteome content of erythrocytes.

The gene or protein list provided in the studies were processed using the ID mapping API of Uniprot in September 2018. The number of proteins identified and mapped without ambiguity in these studies is indicated below.
Only Swiss-Prot entries (reviewed) were considered for protein evidence assignation.

PublicationIdentification 1Uniprot mapping 2Not mapped /
Obsolete
TrEMBLSwiss-Prot
Goodman (2013)2289 (gene list)227853205992269
Lange (2014)123412347281224
Hegedus (2015)2638262202352387
Wilson (2016)165815281702911068
d'Alessandro (2017)18261817201815
Bryk (2017)20902060101081942
Chu (2018)18531804553621387

1 as available in the article and/or in supplementary material
2 uniprot mapping returns all protein isoforms as one entry

The compilation of older studies can be retrieved from the Red Blood Cell Collection database.

The data and differentiation stages presented below come from the proteomic study and analysis performed by our partners of the GReX consortium, more details are available in their published work.

No sequence conservation computed yet.

Interpro domains
Total structural coverage: 0%
Model score: 77

(right-click above to access to more options from the contextual menu)

The reference OMIM entry for this protein is 612056

Golgi to er traffic protein 4, s. cerevisiae, homolog of; get4
Chromosome 7 open reading frame 20; c7orf20
Conserved edge-expressed protein; cee
Transmembrane domain recognition complex, 35-kd
Trc35

CLONING

By searching databases for homologs of pufferfish Cee, Fernandes et al. (2008) identified human C7ORF20, which they called CEE. The deduced protein is rich in leucine and serine. CEE is specific to eukaryotes and is highly conserved, particularly among vertebrates. In Atlantic salmon, Cee was expressed in the superficial layers of developing organs and tissues.

GENE STRUCTURE

Fernandes et al. (2008) determined that the C7ORF20 gene contains 9 exons and spans 19.9 kb.

GENE FUNCTION

Mariappan et al. (2010) identified a conserved 3-protein complex composed of BAT3 (142590), TRC35, and UBL4A (312070) that facilitates tail-anchored protein capture by TRC40 (601913). This BAT3 complex is recruited to ribosomes synthesizing membrane proteins, interacts with the transmembrane domains of newly released tail-anchored proteins, and transfers them to TRC40 for targeting. Depletion of the BAT3 complex allows non-TRC40 factors to compete for tail-anchored proteins, explaining their mislocalization in the analogous yeast deletion strains. Thus, the BAT3 complex acts as a transmembrane domain-selective chaperone that effectively channels tail-anchored proteins to the TRC40 insertion pathway.

MAPPING

By genomic sequence analysis, Fernandes et al. (2008) mapped the GET4 gene to chromosome 7p22.3. ... More on the omim web site

Subscribe to this protein entry history

June 29, 2020: Protein entry updated
Automatic update: Entry updated from uniprot information.

July 2, 2018: Protein entry updated
Automatic update: Entry updated from uniprot information.

Feb. 10, 2018: Protein entry updated
Automatic update: Entry updated from uniprot information.

Feb. 2, 2018: Protein entry updated
Automatic update: Uniprot description updated

Dec. 19, 2017: Protein entry updated
Automatic update: Uniprot description updated

Nov. 23, 2017: Protein entry updated
Automatic update: Uniprot description updated

March 16, 2016: Protein entry updated
Automatic update: OMIM entry 612056 was added.