Sodium/potassium-transporting ATPase subunit beta-1 (ATP1B1)

The protein contains 303 amino acids for an estimated molecular weight of 35061 Da.

 

This is the non-catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of Na(+) and K(+) ions across the plasma membrane. The beta subunit regulates, through assembly of alpha/beta heterodimers, the number of sodium pumps transported to the plasma membrane.', 'Involved in cell adhesion and establishing epithelial cell polarity. (updated: Oct. 10, 2018)

Protein identification was indicated in the following studies:

  1. Bryk and co-workers. (2017) Quantitative Analysis of Human Red Blood Cell Proteome. J Proteome Res. 16(8), 2752-2761.

Methods

The following articles were analysed to gather the proteome content of erythrocytes.

The gene or protein list provided in the studies were processed using the ID mapping API of Uniprot in September 2018. The number of proteins identified and mapped without ambiguity in these studies is indicated below.
Only Swiss-Prot entries (reviewed) were considered for protein evidence assignation.

PublicationIdentification 1Uniprot mapping 2Not mapped /
Obsolete
TrEMBLSwiss-Prot
Goodman (2013)2289 (gene list)227853205992269
Lange (2014)123412347281224
Hegedus (2015)2638262202352387
Wilson (2016)165815281702911068
d'Alessandro (2017)18261817201815
Bryk (2017)20902060101081942
Chu (2018)18531804553621387

1 as available in the article and/or in supplementary material
2 uniprot mapping returns all protein isoforms as one entry

The compilation of older studies can be retrieved from the Red Blood Cell Collection database.

The data and differentiation stages presented below come from the proteomic study and analysis performed by our partners of the GReX consortium, more details are available in their published work.

No sequence conservation computed yet.

This protein is annotated as membranous in Gene Ontology, is annotated as membranous in UniProt, is predicted to be membranous by TOPCONS.


Interpro domains
Total structural coverage: 100%
Model score: 0
No model available.

(right-click above to access to more options from the contextual menu)

The reference OMIM entry for this protein is 182330

Atpase, na+/k+ transporting, beta-1 polypeptide; atp1b1
Na,k-atpase beta-1 polypeptide

DESCRIPTION

The Na+/K+ ATPase is a plasma membrane pump with numerous physiologic functions. It maintains ionic homeostasis that is critical for cell survival, differentiation, and apoptosis. The Na+/K+ ATPase holoenzyme consists of a catalytic alpha subunit (see 182310), a beta subunit, and a modulatory gamma subunit (FXYD2; 601814). Beta subunits, such as ATP1B1, are responsible for formation and structural integrity of the Na+/K+ ATPase holoenzyme (summary by Li et al., 2011).

CLONING

From HeLa cells, Kawakami et al. (1986) isolated a cDNA clone that covered the entire coding region of the beta subunit of Na,K-ATPase. Remarkably, 61% homology to the amino acid sequence of the Torpedo (electric ray) counterpart was demonstrated. - Pseudogenes Lane et al. (1989) isolated clones for a processed pseudogene designated ATP1BL1. Whether this is the same as the ATP1BL1 gene mapped to chromosome 4 by Yang-Feng et al. (1988) was not certain.

GENE STRUCTURE

Lane et al. (1989) found that the ATP1B gene spans about 26.7 kb of genomic DNA and includes 24 kb of intron sequence. The complete message is encoded by 6 exons ranging in size from 81 to 1,427 bp.

MAPPING

Yang-Feng et al. (1988) assigned the ATP1B gene to 1q by Southern analysis of DNA from rodent/human somatic cell hybrids. In the course of construction of a physical map of human 1q23-q25, Oakey et al. (1992) mapped ATP1B near the middle of this segment. The corresponding gene in the mouse is located on chromosome 1 (Kent et al., 1987). By linkage studies in interspecific backcrosses of Mus spretus and Mus musculus domesticus, Seldin (1989) also demonstrated that the homologous gene is located on mouse chromosome 1.

BIOCHEMICAL FEATURES

- Crystal Structure Morth et al. (2007) presented the x-ray crystal structure at 3.5-angstrom resolution of the pig renal sodium/potassium ATPase (Na+,K(+)-ATPase) with 2 rubidium ions bound (as potassium congeners) in an occluded state in the transmembrane part of the alpha subunit (see ATP1A1, 182310). Several of the residues forming the cavity for rubidium/potassium occlusion in the Na+,K(+)-ATPase are homologous to those binding calcium in the calcium-ion ATPase of sarcoendoplasmic reticulum (SERCA1; 108730). The beta and gamma (ATP1G1; 601814) subunits specific to the Na+,K(+)-ATPase are associated with transmembrane helices alpha-M7/alpha-M10, and alpha-M9, respectively. The gamma subunit corresponds to a fragment of the V-type ATPase c subunit. The carboxy terminus of the alpha subunit is contained within a pocket between transmembrane helices and seems to be a novel regulatory element controlling sodium affinity, possibly influenced by the membrane potential. Crystal structures of the potassium-bound form of the Na+/K(+)-ATPase pump revealed an intimate docking of the alpha-subunit carboxy terminus at the transmembrane domain (e.g., Morth et al., 2007). Poulsen et al. (2010) showed that this element is a key regulator of a theretofore unrecognized ion pathway. Models of P-type ATPases operated with a single ion conduit through the pump, but the data of Poulsen et al. (2010) suggested an additional pathway in the Na+/K(+)-ATPase between the ion-binding sites and the cytoplasm. The C-terminal pathway allows a cytoplasmic proton to enter and stabilize site III when empty in the potassium-bound state, and when potassium is released the proton will also return to the cytoplasm, thus allowing an over ... More on the omim web site

Subscribe to this protein entry history

Nov. 17, 2018: Protein entry updated
Automatic update: OMIM entry 182330 was added.

Oct. 19, 2018: Additional information
Initial protein addition to the database. This entry was referenced in Bryk and co-workers. (2017).