Cytosol aminopeptidase (LAP3)

The protein contains 519 amino acids for an estimated molecular weight of 56166 Da.

 

Cytolosic metallopeptidase that catalyzes the removal of unsubstituted N-terminal hydrophobic amino acids from various peptides. The presence of Zn(2+) ions is essential for the peptidase activity, and the association with other cofactors can modulate the substrate spectificity of the enzyme. For instance, in the presence of Mn(2+), it displays a specific Cys-Gly hydrolyzing activity of Cys-Gly-S-conjugates. Involved in the metabolism of glutathione and in the degradation of glutathione S-conjugates, which may play a role in the control of the cell redox status. (updated: Oct. 7, 2020)

Protein identification was indicated in the following studies:

  1. Goodman and co-workers. (2013) The proteomics and interactomics of human erythrocytes. Exp Biol Med (Maywood) 238(5), 509-518.
  2. Lange and co-workers. (2014) Annotating N termini for the human proteome project: N termini and Nα-acetylation status differentiate stable cleaved protein species from degradation remnants in the human erythrocyte proteome. J Proteome Res. 13(4), 2028-2044.
  3. Hegedűs and co-workers. (2015) Inconsistencies in the red blood cell membrane proteome analysis: generation of a database for research and diagnostic applications. Database (Oxford) 1-8.
  4. Wilson and co-workers. (2016) Comparison of the Proteome of Adult and Cord Erythroid Cells, and Changes in the Proteome Following Reticulocyte Maturation. Mol Cell Proteomics. 15(6), 1938-1946.
  5. Bryk and co-workers. (2017) Quantitative Analysis of Human Red Blood Cell Proteome. J Proteome Res. 16(8), 2752-2761.
  6. D'Alessandro and co-workers. (2017) Red blood cell proteomics update: is there more to discover? Blood Transfus. 15(2), 182-187.
  7. Chu and co-workers. (2018) Quantitative mass spectrometry of human reticulocytes reveal proteome-wide modifications during maturation. Br J Haematol. 180(1), 118-133.

Methods

The following articles were analysed to gather the proteome content of erythrocytes.

The gene or protein list provided in the studies were processed using the ID mapping API of Uniprot in September 2018. The number of proteins identified and mapped without ambiguity in these studies is indicated below.
Only Swiss-Prot entries (reviewed) were considered for protein evidence assignation.

PublicationIdentification 1Uniprot mapping 2Not mapped /
Obsolete
TrEMBLSwiss-Prot
Goodman (2013)2289 (gene list)227853205992269
Lange (2014)123412347281224
Hegedus (2015)2638262202352387
Wilson (2016)165815281702911068
d'Alessandro (2017)18261817201815
Bryk (2017)20902060101081942
Chu (2018)18531804553621387

1 as available in the article and/or in supplementary material
2 uniprot mapping returns all protein isoforms as one entry

The compilation of older studies can be retrieved from the Red Blood Cell Collection database.

The data and differentiation stages presented below come from the proteomic study and analysis performed by our partners of the GReX consortium, more details are available in their published work.

No sequence conservation computed yet.

Interpro domains
Total structural coverage: 97%
Model score: 30

(right-click above to access to more options from the contextual menu)

The reference OMIM entry for this protein is 170250

Leucine aminopeptidase 3; lap3
Peptidase s; peps

CLONING

Matsushima et al. (1991) presented evidence that prolyl aminopeptidases (EC 3.4.11.5) purified from pig small intestine mucosa and human liver and leucyl aminopeptidase (EC 3.4.11.1) purified from pig kidney were identical. Both pig enzymes were indistinguishable in their molecular mass (about 300 kD), subunit composition (6 identical 55-kD subunits), chromatographic behavior, catalysis of synthetic N-terminal leucyl and prolyl peptides, pH dependence, susceptibility to proteinase inhibitors, and activation by manganese and magnesium.

MAPPING

By somatic cell hybridization, Shows et al. (1978) assigned the gene for peptidase S to chromosome 4. Schmutz and Simpson (1983) measured leukocyte PEPS in 3 patients with Wolf-Hirschhorn syndrome (4p-) and in 50 controls. They also compared PEPS in 5 control fibroblast lines and 8 fibroblast lines with chromosome 4 aberrations including partial monosomies and partial trisomies. PEPS levels did not differ from controls in any. This experience permitted exclusion mapping of PEPS to 4p11-4q13; combined with previously reported data, the assignment becomes 4p11-4q12. ... More on the omim web site

Subscribe to this protein entry history

Oct. 20, 2020: Protein entry updated
Automatic update: Entry updated from uniprot information.

Feb. 2, 2018: Protein entry updated
Automatic update: Uniprot description updated

Dec. 19, 2017: Protein entry updated
Automatic update: Uniprot description updated

Nov. 23, 2017: Protein entry updated
Automatic update: Uniprot description updated

June 20, 2017: Protein entry updated
Automatic update: comparative model was added.

March 16, 2016: Protein entry updated
Automatic update: OMIM entry 170250 was added.