

Akhila Melarkode Vattekatte¹, Julien Diharce², Catherine Etchebest³, Alexandre G. de Brevern⁴. ¹DSIMB Laboratory, INSERM UMRS_1134, Biochemistry, University of Reunion Island, Saint Denis, France, ³DSIMB, INSERM UMRS_1134, Paris-Cité, Paris, France, ³DSIMB, INSERM UMRS_1134, Paris-Cité, Paris, France, ³DSIMB, INSERM UMRS_1134, Biochemistry, University of Reunion Island, Saint Denis, France, ³DSIMB, INSERM UMRS_1134, Biochemistry, University of Reunion Island, Saint Denis, France, ³DSIMB, INSERM UMRS_1134, Biochemistry, University of Reunion Island, Saint Denis, France, ³DSIMB, INSERM UMRS_1134, Biochemistry, University of Reunion Island, Saint Denis, France, ³DSIMB, INSERM UMRS_1134, Biochemistry, University of Reunion Island, Saint Denis, France, ³DSIMB, INSERM UMRS_1134, Biochemistry, University of Reunion Island, Saint Denis, France, ³DSIMB, INSERM UMRS_1134, Biochemistry, University of Reunion Island, Saint Denis, France, ³DSIMB, INSERM UMRS_1134, Biochemistry, University, France, ³DSIMB, INSERM UMRS_1134, Biochemistry, ⁴DSIMB, INSERM UMRS_1134 Univ Paris Cité, Paris, France.

Abstract: Protein conformational flexibility is crucial for its structural stability and function. The concerted displacements of residues in an antigen-antibody complex facilitate and determine their interactions' strength, making their study indispensable to modulating their function. Members of the family Camelidae express a unique subset of Immunoglobulin Gamma called the Heavy Chain. Each V_HH domain comprises two types of amino acid regions varying in sequence identity arranged alternatingly called the Framework Regions (CDRs). Even when expressed independently *in-vitro*, V_HH domains exhibit excellent solubility and thermostability compared to the V_H-V_L complexes, so they present a valuable opportunity to exploit their biophysical and biochemical properties to generate the next generation of therapeutic and diagnostic molecules. Recent studies have reported sequence and structural features of V_H-V_L complexes. In this study, we performed large-scale classical molecular dynamics simulations for a dataset of unrelated V_{H} H structures to understand the local and global differences in their dynamics. We used classical metrics such as the Normalised B-factors of C α atoms, RMSF of C α atoms and an in-house method called the Protein Blocks (PBs) to investigate flexibility in $V_{H}H$ domains and trajectories. We have classified the trajectories of the V_HH trajectories. We observed various local changes in CDRs but within different ranges in trajectories within the same cluster as well as from other clusters. The FR-CDR boundary regions showed distinct local backbone conformational diversity during dynamics which could aid in improving the design and function of $V_H H$ domains.

Dataset

Sequence and structural features of 88 non redundant $V_{H}H$ domains. WITT VIEWNSEKPEDTAM Figure 1: Sequence and Structure characteristics in V_HH dataset. Conservation of (A) Amino acid residues, (B) Secondary structures, and (C) Protein Blocks. The four Framework regions are delineated in each figure

• Protein Blocks offer a unique perspective which is both qualitative and quantitative to characterize backbone diversity in structures and trajectories of V_H domains.

• Higher RMSF values need not be always considered as flexible

• There are few residue positions in CDR3 that do not show

• The 4th N-terminal loop exhibits unexpected backbone

• This work is supported by the POE FEDER 2014-20 of the Conseil Régional de La Réunion (S3D VHH program, N° SYNERGIE RE0022962), EU-H2020 and Université de la Réunion.

• A.M.V. acknowledges access granted to high performance computing (HPC) resources at the French National Computing Centre CINES under grants no. A0040710426 and A0110713032 funded by the GENCI (Grand