Citations of the KNOTTIN database

Naderi Soorki, M., Jalali, A. & Galehdari, H. Molecular Characterization and Biodiversity of a Putative Chlorotoxin from the Iranian Yellow Scorpion Odontobuthus doriae. Iranian Biomedical Journal 21, 342–346 (2017). [Link]
Patel, S. Pathogenicity-associated protein domains: The fiercely-conserved evolutionary signatures. Gene Reports 7, 127–141 (2017). [Link]
Carla Barbosa da Silva Lima, S. et al. Plants Defense-related Cyclic Peptides: Diversity, Structure and Applications. Current Protein and Peptide Science 18, 375–390 (2017). [Link]
Oldrati, V. et al. Peptidomic and transcriptomic profiling of four distinct spider venoms. PLOS ONE 12, e0172966 (2017). [Link]
Simeon, R. & Chen, Z. In vitro-engineered non-antibody protein therapeutics. Protein Cell 1–12 (2017). [Link]
Wong, K. H., Tan, W. L., Xiao, T. & Tam, J. P. β-Ginkgotides: Hyperdisulfide-constrained peptides from Ginkgo biloba. Scientific Reports 7, (2017). [Link]
Tellechea, M. E. Purificación, clonación y expresión de inhibidores peptídicos de proteasas de potencial aplicación biomédica a partir de Solanum tuberosum spp. (Facultad de Ciencias Exactas, 2017).
Pai, P. P. & Mondal, S. Intriguing Cystine-Knot Miniproteins in Drug Design and Therapeutics. in Toxins and Drug Discovery (eds. Cruz, L. J. & Luo, S.) 437–456 (Springer Netherlands, 2017). [Link]
Molesini, B., Treggiari, D., Dalbeni, A., Minuz, P. & Pandolfini, T. Plant cystine-knot peptides: pharmacological perspectives. British journal of clinical pharmacology 83, 63–70 (2017). [Link]
Franceschi, N., Paraskevopoulos, K., Waigmann, E. & Ramon, M. Predictive protein toxicity and its use in risk assessment. Trends in Biotechnology 35, 483–486 (2017). [Link]
Loo, S. et al. Identification and Characterization of Roseltide, a Knottin-type Neutrophil Elastase Inhibitor Derived from Hibiscus sabdariffa. Sci Rep 6, (2016). [Link]
Patel, S. In silico analysis of Hepatitis C virus (HCV) polyprotein domains and their comparison with other pathogens and allergens to gain insight on pathogenicity mechanisms. Computational Biology and Chemistry 65, 91–102 (2016).
Rong, M. et al. A sodium channel inhibitor ISTX-I with a novel structure provides a new hint at the evolutionary link between two toxin folds. Sci Rep 6, 29691 (2016). [Link]
Green, B. R. et al. Structural Basis for the Inhibition of Voltage-gated Sodium Channels by Conotoxin μO§-GVIIJ. J. Biol. Chem. 291, 7205–7220 (2016). [Link]
Jones, P. M. & George, A. M. Computational analysis of the MCoTI-II plant defence knottin reveals a novel intermediate conformation that facilitates trypsin binding. Scientific Reports 6, srep23174 (2016).
Undheim, E. A., Mobli, M. & King, G. F. Toxin structures as evolutionary tools: Using conserved 3D folds to study the evolution of rapidly evolving peptides. BioEssays 38, 539–548 (2016). [Link]
Robinson, S. D. et al. A naturally occurring peptide with an elementary single disulfide-directed β-hairpin fold. Structure 24, 293–299 (2016). [Link]
Meissner, G. O. et al. Molecular cloning and in silico characterization of knottin peptide, U2-SCRTX-Lit2, from brown spider (Loxosceles intermedia) venom glands. Journal of molecular modeling 22, 196 (2016).
Karaki, L. et al. Genome-wide analysis identifies gain and loss/change of function within the small multigenic insecticidal Albumin 1 family of Medicago truncatula. BMC plant biology 16, 63 (2016).
Hariton Shalev, A., Sobol, I., Ghanim, M., Liu, S.-S. & Czosnek, H. The Whitefly Bemisia tabaci knottin-1 gene is implicated in regulating the quantity of Tomato yellow leaf curl virus ingested and transmitted by the insect. Viruses 8, 205 (2016).
Avrutina, O. Synthetic Cystine-Knot Miniproteins – Valuable Scaffolds for Polypeptide Engineering. in Protein Targeting Compounds 121–144 (Springer, Cham, 2016). [Link]
Lufrano, D. et al. Biochemical characterization of a novel carboxypeptidase inhibitor from a variety of Andean potatoes. Phytochemistry 120, 36–45 (2015). [Link]
Treggiari, D. et al. A cystine-knot miniprotein from tomato fruit inhibits endothelial cell migration and angiogenesis by affecting vascular endothelial growth factor receptor (VEGFR) activation and nitric oxide production. Mol. Nutr. Food Res. 59, 2255–2266 (2015).
Herzig, V. & King, G. F. The Cystine Knot Is Responsible for the Exceptional Stability of the Insecticidal Spider Toxin ω-Hexatoxin-Hv1a. Toxins 7, 4366–4380 (2015). [Link]
Sankaran, S., de Ruiter, M., Cornelissen, J. J. L. M. & Jonkheijm, P. Supramolecular Surface Immobilization of Knottin Derivatives for Dynamic Display of High Affinity Binders. Bioconjugate Chem. 26, 1972–1980 (2015). [Link]
Barre, A. et al. Allergénicité des protéines édulcorantes. Revue Française d’Allergologie 55, 363–371 (2015). [Link]
Kaas, Q. & Craik, D. J. Bioinformatics-Aided Venomics. Toxins 7, 2159–2187 (2015). [Link]
Xu, W. et al. The knottin-like Blufensin family regulates genes involved in nuclear import and the secretory pathway in barley-powdery mildew interactions. Front Plant Sci 6, (2015).
Nguyen, P. Q. T. et al. Allotides: Proline-Rich Cystine Knot α-Amylase Inhibitors from Allamanda cathartica. J. Nat. Prod. 78, 695–704 (2015). [Link]
Mahatmanto, T. et al. The Evolution of Momordica Cyclic Peptides. Mol Biol Evol 32, 392–405 (2015). [Link]
Woriedh, M., Merkl, R. & Dresselhaus, T. Maize EMBRYO SAC family peptides interact differentially with pollen tubes and fungal cells. Journal of experimental botany 66, 5205–5216 (2015). [Link]
Islam, S. A., Sajed, T., Kearney, C. M. & Baker, E. J. PredSTP: a highly accurate SVM based model to predict sequential cystine stabilized peptides. BMC bioinformatics 16, 210 (2015). [Link]
Gilmore, S. A., Voorhies, M., Gebhart, D. & Sil, A. Genome-wide reprogramming of transcript architecture by temperature specifies the developmental states of the human pathogen Histoplasma. PLoS genetics 11, e1005395 (2015).
Ackerman, S. E., Currier, N. V., Bergen, J. M. & Cochran, J. R. Cystine-knot peptides: emerging tools for cancer imaging and therapy. Expert Review of Proteomics 11, 561–572 (2014). [Link]
Undheim, E. A. B. et al. Clawing through Evolution: Toxin Diversification and Convergence in the Ancient Lineage Chilopoda (Centipedes). Mol Biol Evol 31, 2124–2148 (2014).
Cochran, J. R., Silverman, A. P. & Kariolis, M. S. Cystine knot peptides binding to alpha IIb beta 3 integrins and methods of use. (Google Patents, 2014). [Link]
Haney, R. A., Ayoub, N. A., Clarke, T. H., Hayashi, C. Y. & Garb, J. E. Dramatic expansion of the black widow toxin arsenal uncovered by multi-tissue transcriptomics and venom proteomics. BMC Genomics 15, 366 (2014). [Link]
Akondi, K. B. et al. Discovery, Synthesis, and Structure–Activity Relationships of Conotoxins. Chem. Rev. 114, 5815–5847 (2014). [Link]
Mahatmanto, T., Poth, A. G., Mylne, J. S. & Craik, D. J. A comparative study of extraction methods reveals preferred solvents for cystine knot peptide isolation from Momordica cochinchinensis seeds. Fitoterapia 95, 22–33 (2014).
Zhu, X. et al. 99mTc-Labeled Cystine Knot Peptide Targeting Integrin αvβ6 for Tumor SPECT Imaging. Mol. Pharmaceutics 11, 1208–1217 (2014). [Link]
Vink, S., Daly, N. L., Steen, N., Craik, D. J. & Alewood, P. F. Holocyclotoxin-1, a cystine knot toxin from Ixodes holocyclus. Toxicon 90, 308–317 (2014). [Link]
Torres, A. F. et al. Transcriptome analysis in venom gland of the predatory giant ant Dinoponera quadriceps: Insights into the polypeptide toxin arsenal of hymenopterans. PLoS One 9, e87556 (2014).
Su, M., Li, H. & Jung, J. H. Marine Knottins with Remarkable Biological Functions Cast a Promising Outlook on Clinical Translation. Oceanography: Open Access 1–2 (2014). [Link]
Reinwarth, M., Avrutina, O., Fabritz, S. & Kolmar, H. Fragmentation Follows Structure: Top-Down Mass Spectrometry Elucidates the Topology of Engineered Cystine-Knot Miniproteins. PloS one 9, e108626 (2014). [Link]
de Souza Cândido, E. et al. The use of versatile plant antimicrobial peptides in agribusiness and human health. Peptides 55, 65–78 (2014). [Link]
Chang, H.-J. & Yang, A.-S. Design of Phage-Displayed Cystine-Stabilized Mini-Protein Libraries for Proteinaceous Binder Engineering. in Therapeutic Peptides 1–17 (Humana Press, Totowa, NJ, 2014). [Link]
Vassilevski, A. A. et al. Spider toxins comprising disulfide-rich and linear amphipathic domains: a new class of molecules identified in the lynx spider Oxyopes takobius. FEBS J 280, 6247–6261 (2013).
Farkas, E. & Ryadnov, M. Amino Acids, Peptides and Proteins. (Royal Society of Chemistry, 2013). [Link]
Bienvenu, F. et al. Les défensines : des allergènes végétaux importants ? Revue Française d’Allergologie 53, 585–590 (2013). [Link]
Glotzbach, B. et al. Combinatorial Optimization of Cystine-Knot Peptides towards High-Affinity Inhibitors of Human Matriptase-1. PLOS ONE 8, e76956 (2013). [Link]
He, W.-J. et al. Novel Inhibitor Cystine Knot Peptides from Momordica charantia. PLoS One 8, (2013). [Link]
Hardy, M. C., Daly, N. L., Mobli, M., Morales, R. A. V. & King, G. F. Isolation of an Orally Active Insecticidal Toxin from the Venom of an Australian Tarantula. PLOS ONE 8, e73136 (2013). [Link]
Matsubara, F. H. et al. A novel ICK peptide from the Loxosceles intermedia (brown spider) venom gland: Cloning, heterologous expression and immunological cross-reactivity approaches. Toxicon 71, 147–158 (2013).
Glotzbach, B. Isolierung und Charakterisierung hochaffiner Cystinknoten- basierter Matriptase-1 Inhibitoren. (Technische Universität, 2013). [Link]
Weidle, U. H., Auer, J., Brinkmann, U., Georges, G. & Tiefenthaler, G. The Emerging Role of New Protein Scaffold-based Agents for Treatment of Cancer. Cancer Genomics Proteomics 10, 155–168 (2013). [Link]
Bende, N. S. et al. The insecticidal neurotoxin Aps III is an atypical knottin peptide that potently blocks insect voltage-gated sodium channels. Biochemical Pharmacology 85, 1542–1554 (2013). [Link]
Moore, S. J., Leung, C. L., Norton, H. K. & Cochran, J. R. Engineering Agatoxin, a Cystine-Knot Peptide from Spider Venom, as a Molecular Probe for In Vivo Tumor Imaging. PLOS ONE 8, e60498 (2013). [Link]
Sikora, M. & Cieplak, M. Formation of Cystine Slipknots in Dimeric Proteins. PLOS ONE 8, e57443 (2013). [Link]
Nguyen, G. K. T. et al. Discovery of Linear Cyclotides in Monocot Plant Panicum laxum of Poaceae Family Provides New Insights into Evolution and Distribution of Cyclotides in Plants. J. Biol. Chem. 288, 3370–3380 (2013).
Kuzmenkov, A. I., Fedorova, I. M., Vassilevski, A. A. & Grishin, E. V. Cysteine-rich toxins from Lachesana tarabaevi spider venom with amphiphilic C-terminal segments. Biochimica et Biophysica Acta (BBA) - Biomembranes 1828, 724–731 (2013). [Link]
Debowski, D. Natural Proteinaceous Inhibitors of Serine Proteases. Current Pharmaceutical Design 19, 1068–1084 (2013). [Link]
Craik, D. J., Fairlie, D. P., Liras, S. & Price, D. The Future of Peptide-based Drugs. Chemical Biology & Drug Design 81, 136–147 (2013). [Link]
Chan, L. Y. et al. A new family of cystine knot peptides from the seeds of Momordica cochinchinensis. Peptides 39, 29–35 (2013). [Link]
Zhang, Y. et al. Evolution of a horizontally acquired legume gene, albumin 1, in the parasitic plant Phelipanche aegyptiaca and related species. BMC evolutionary biology 13, 48 (2013). [Link]
Zhang, Y. Horizontal gene transfer studies in parasitic plants of the Orobanchaceae. (The Pennsylvania State University, 2013).
Steiner, A. M. Oxidative folding of conotoxins: Chemical and biological developments to efficiency of production of short, cysteine-rich peptides. (The University of Utah, 2013).
Reinwarth, M. et al. Oxidative Folding of Peptides with Cystine-Knot Architectures: Kinetic Studies and Optimization of Folding Conditions. Chembiochem 14, 137–146 (2013). [Link]
Mishal, R., Tahir, H. M., Zafar, K. & Arshad, M. Anti-cancerous applications of scorpion venom. International Journal of Biological and Pharmaceutical Research 4, 356–360 (2013). [Link]
Li, H. et al. Asteropsin A: An unusual cystine-crosslinked peptide from porifera enhances neuronal Ca 2+ influx. Biochimica et Biophysica Acta (BBA)-General Subjects 1830, 2591–2599 (2013).
Kövér, K. E. & Batta, G. NMR investigation of disulfide containing peptides and proteins. Amino Acids, Peptides and Proteins 38, 37 (2013). [Link]
Jones, L. H. & McKnight, A. J. Biotherapeutics: Recent Developments Using Chemical and Molecular Biology. (Royal Society of Chemistry, 2013). [Link]
Góngora-Benítez, M., Tulla-Puche, J. & Albericio, F. Multifaceted roles of disulfide bonds. Peptides as therapeutics. Chemical reviews 114, 901–926 (2013). [Link]
Banta, S., Dooley, K. & Shur, O. Replacing Antibodies: Engineering New Binding Proteins. Annual Review of Biomedical Engineering 15, 93–113 (2013).
Reinwarth, M., Nasu, D., Kolmar, H. & Avrutina, O. Chemical Synthesis, Backbone Cyclization and Oxidative Folding of Cystine-knot Peptides — Promising Scaffolds for Applications in Drug Design. Molecules 17, 12533–12552 (2012).
Kolmar, H., Sommerhoff, C. & Wentzel, A. Use of microproteins as tryptase inhibitors. (Google Patents, 2012).
Kolmar, H., Boehnlein, E., Wentzel, A. & Schmoldt, H.-U. Dimeric or multimeric microproteins. (Google Patents, 2012). [Link]
Moore, S. J., Leung, C. L. & Cochran, J. R. Knottins: disulfide-bonded therapeutic and diagnostic peptides. Drug Discovery Today: Technologies 9, e3–e11 (2012). [Link]
Barba, M. et al. Cupricyclins, Novel Redox-Active Metallopeptides Based on Conotoxins Scaffold. PLoS ONE 7, e30739 (2012). [Link]
López-García, B., San Segundo, B. & Coca, M. Antimicrobial Peptides as a Promising Alternative for Plant Disease Protection. in Small Wonders: Peptides for Disease Control 1095, 263–294 (American Chemical Society, 2012). [Link]
Tirosh, Y., Morpurgo, N., Cohen, M., Linial, M. & Bloch, G. Raalin, a transcript enriched in the honey bee brain, is a remnant of genomic rearrangement in Hymenoptera. Insect molecular biology 21, 305–318 (2012). [Link]
Meissner, G. O. Obtenção e caracterização funcional de toxinas recombinantes pertencente à família das notinas presente do veneno de aranha-marrom (Loxosceles intermedia). (2012).
Gowd, K. H. et al. Dissecting a role of evolutionary-conserved but noncritical disulfide bridges in cysteine-rich peptides using $ømega$-conotoxin GVIA and its selenocysteine analogs. Peptide Science 98, 212–223 (2012).
Cemazar, M., Kwon, S., Mahatmanto, T., S Ravipati, A. & J Craik, D. Discovery and applications of disulfide-rich cyclic peptides. Current topics in medicinal chemistry 12, 1534–1545 (2012). [Link]
Kolmar, H. Natural and Engineered Cystine Knot Miniproteins for Diagnostic and Therapeutic Applications. Current Pharmaceutical Design 17, 4329–4336 (2011). [Link]
B. Carstens, B. et al. Engineering of Conotoxins for the Treatment of Pain. Current Pharmaceutical Design 17, 4242–4253 (2011). [Link]
Zakrzewska, M., Szlachcic, A. & Otlewski, J. Tailoring Small Proteins Towards Biomedical Applications. Current Pharmaceutical Biotechnology 12, 1792–1798 (2011).
Galat, A. Common structural traits for cystine knot domain of the TGFβ superfamily of proteins and three-fingered ectodomain of their cellular receptors. Cell. Mol. Life Sci. 68, 3437–3451 (2011).
Matsunaga, S. et al. Isolation, Amino Acid Sequence and Biological Activities of Novel Long-Chain Polyamine-Associated Peptide Toxins from the Sponge Axinyssa aculeata. ChemBioChem 12, 2191–2200 (2011).
DeSimone, C. V., Zarayskiy, V. V., Bondarenko, V. E. & Morales, M. J. Heteropoda Toxin 2 Interaction with Kv4.3 and Kv4.1 Reveals Differences in Gating Modification. Mol Pharmacol 80, 345–355 (2011). [Link]
Daly, N. L. & Craik, D. J. Bioactive cystine knot proteins. Current Opinion in Chemical Biology 15, 362–368 (2011). [Link]
Elliger, C. A. et al. Diversity of conotoxin types from Conus californicus reflects a diversity of prey types and a novel evolutionary history. Toxicon 57, 311–322 (2011). [Link]
Gilly, W. F. et al. A diverse family of novel peptide toxins from an unusual cone snail, Conus californicus. J. Exp. Biol. 214, 147–161 (2011). [Link]
Wiranowska, M., Colina, L. O. & Johnson, J. O. Clathrin-mediated entry and cellular localization of chlorotoxin in human glioma. Cancer cell international 11, 27 (2011). [Link]
Kuhn-Nentwig, L., Stöcklin, R. & Nentwig, W. Venom composition and strategies in spiders: is everything possible? Advances in insect physiology 40, 1 (2011).
Kavousi, K., Moshiri, B., Sadeghi, M., Araabi, B. N. & Moosavi-Movahedi, A. A. A protein fold classifier formed by fusing different modes of pseudo amino acid composition via PSSM. Computational biology and chemistry 35, 1–9 (2011). [Link]
Gracy, J. & Chiche, L. Structure and modeling of knottins, a promising molecular scaffold for drug discovery. Current pharmaceutical design 17, 4337–4350 (2011).
Gould, A., Ji, Y., L Aboye, T. & A Camarero, J. Cyclotides, a novel ultrastable polypeptide scaffold for drug discovery. Current pharmaceutical design 17, 4294–4307 (2011). [Link]
Clemente, A., Sonnante, G. & Domoney, C. Bowman-Birk inhibitors from legumes and human gastrointestinal health: current status and perspectives. Current Protein and Peptide Science 12, 358–373 (2011). [Link]
Casas, J. Spider Physiology and Behaviour: Physiology. (Academic Press, 2011).
Aboye, T. L. Engineering of the Ultra-stable Cystine Knot Framework of Microproteins : Design, Chemical Synthesis and Structural Studies. (2011).
Hwang, B., Hwang, J.-S., Lee, J. & Lee, D. G. Antifungal properties and mode of action of psacotheasin, a novel knottin-type peptide derived from Psacothea hilaris. Biochemical and Biophysical Research Communications 400, 352–357 (2010). [Link]
Kaas, Q., Westermann, J.-C. & Craik, D. J. Conopeptide characterization and classifications: An analysis using ConoServer. Toxicon 55, 1491–1509 (2010). [Link]
Gowd, K. H. et al. Site-Specific Effects of Diselenide Bridges on the Oxidative Folding of a Cystine Knot Peptide, ω-Selenoconotoxin GVIA. Biochemistry 49, 2741–2752 (2010).
Kaas, Q. & Craik, D. J. Analysis and classification of circular proteins in CyBase. Biopolymers 94, 584–591 (2010). [Link]
Lahti, J. L. Combinatorial, Rational, And Bioinformatics Approaches to Engineering Cystine-Rich Proteins. (Stanford University, 2010). [Link]
Kolmar, H. Engineered cystine-knot miniproteins for diagnostic applications. Expert review of molecular diagnostics 10, 361–368 (2010). [Link]
Jacoby, D. B. et al. Potent pleiotropic anti-angiogenic effects of TM601, a synthetic chlorotoxin peptide. Anticancer research 30, 39–46 (2010). [Link]
Hammami, R. & Fliss, I. Current trends in antimicrobial agent research: chemo-and bioinformatics approaches. Drug discovery today 15, 540–546 (2010). [Link]
Gracy, J. & Chiche, L. Optimizing structural modeling for a specific protein scaffold: knottins or inhibitor cystine knots. BMC bioinformatics 11, 535 (2010). [Link]
Dattelbaum, J. D. Genetically engineered proteins as recognition receptors. in Recognition receptors in biosensors 531–563 (Springer, 2010). [Link]
Bohlen, C. J. et al. A bivalent tarantula toxin activates the capsaicin receptor, TRPV1, by targeting the outer pore domain. Cell 141, 834–845 (2010). [Link]
Vassilevski, A. A., Kozlov, S. A. & Grishin, E. V. Molecular diversity of spider venom. Biochemistry Moscow 74, 1505–1534 (2009). [Link]
Lahti, J. L., Silverman, A. P. & Cochran, J. R. Interrogating and Predicting Tolerated Sequence Diversity in Protein Folds: Application to E. elaterium Trypsin Inhibitor-II Cystine-Knot Miniprotein. PLOS Computational Biology 5, e1000499 (2009).
Alvarez, E., Cahoreau, C. & Combarnous, Y. Comparative structure analyses of cystine knot-containing molecules with eight aminoacyl ring including glycoprotein hormones (GPH) alpha and beta subunits and GPH-related A2 (GPA2) and B5 (GPB5) molecules. Reproductive Biology and Endocrinology 7, 90 (2009).
Rajasekaran, K., Lucca, A. J. D. & Cary, J. W. Aflatoxin control through transgenic approaches. Toxin Reviews 28, 89–101 (2009). [Link]
Chang, H.-J. et al. Molecular Evolution of Cystine-Stabilized Miniproteins as Stable Proteinaceous Binders. Structure 17, 620–631 (2009). [Link]
Nikoh, N. & Nakabachi, A. Aphids acquired symbiotic genes via lateral gene transfer. BMC Biol. 7, 12 (2009). [Link]
Vanholme, B. et al. Structural and functional investigation of a secreted chorismate mutase from the plant-parasitic nematode Heterodera schachtii in the context of related enzymes from diverse origins. Molecular plant pathology 10, 189–200 (2009).
Telang, M. A., Pyati, P., Sainani, M., Gupta, V. S. & Giri, A. P. Momordica charantia trypsin inhibitor II inhibits growth and development of Helicoverpa armigera. Insect science 16, 371–380 (2009). [Link]
Schmoldt, H.-U., Daneschdar, M., Kolmar, H. & Blind, M. MicrobodiesTM. Nucleic Acid and Peptide Aptamers: Methods and Protocols 361–372 (2009).
Matavel, A. et al. Structure and activity analysis of two spider toxins that alter sodium channel inactivation kinetics. Biochemistry 48, 3078–3088 (2009).
Kolmar, H. Biological diversity and therapeutic potential of natural and engineered cystine knot miniproteins. Current opinion in pharmacology 9, 608–614 (2009). [Link]
Jayanthi, M., Prakash, Nau., Kangueane, P., Rafi, Z. A. & Sekar, K. Effect of Disulfide Bonds in Antifungal Peptide from Petunia Hybrida: A Molecular Dynamics Study. Open Structural Biology Journal 3, 84–93 (2009). [Link]
Fry, B. G. et al. The Toxicogenomic Multiverse: Convergent Recruitment of Proteins Into Animal Venoms. Annual Review of Genomics and Human Genetics 10, 483–511 (2009).
Daly, N. L., Rosengren, K. J. & Craik, D. J. Discovery, structure and biological activities of cyclotides. Advanced drug delivery reviews 61, 918–930 (2009). [Link]
Delano-Frier, J. P., Castro-Guillen, J. L. & Blanco-Labra, A. Recent Findings on the Multifaceted Functionality of Enzyme Inhibition by Natural Compounds: A Review. Current Enzyme Inhibition 4, 121–152 (2008).
Kolmar, H. Alternative binding proteins: Biological activity and therapeutic potential of cystine-knot miniproteins. The FEBS journal 275, 2684–2690 (2008). [Link]
Heitz, A. et al. Knottin cyclization: impact on structure and dynamics. BMC structural biology 8, 54 (2008). [Link]
Frejd, F. Y. Novel alternative scaffolds and their potential use for tumor targeted radionuclide therapy. Targeted Radionuclide Tumor Therapy 89–116 (2008). [Link]
Combelles, C., Gracy, J., Heitz, A., Craik, D. J. & Chiche, L. Structure and folding of disulfide-rich miniproteins: Insights from molecular dynamics simulations and MM-PBSA free energy calculations. Proteins: Structure, Function, and Bioinformatics 73, 87–103 (2008).
Yu, B. & Millhauser, G. L. Chemical disulfide mapping identifies an inhibitor cystine knot in the agouti signaling protein. FEBS letters 581, 5561–5565 (2007). [Link]
Wang, C. K., Kaas, Q., Chiche, L. & Craik, D. J. CyBase: a database of cyclic protein sequences and structures, with applications in protein discovery and engineering. Nucleic acids research 36, D206–D210 (2007). [Link]
Offmann, B., Tyagi, M. & de Brevern, A. G. Local protein structures. Current Bioinformatics 2, 165–202 (2007). [Link]
Louis, S. et al. Broad screening of the legume family for variability in seed insecticidal activities and for the occurrence of the A1b-like knottin peptide entomotoxins. Phytochemistry 68, 521–535 (2007).
Telang, M. Molecular analysis of plant-pest interaction with special reference to helicoverpa armigera and proteinase inhibitors from host and non-host plants. (CSIR-National Chemical Laboratory, Pune, India, 2006).
Shenkarev, Z. O. et al. Conformation and mode of membrane interaction in cyclotides. The FEBS journal 273, 2658–2672 (2006). [Link]
Niemann, H. H., Schmoldt, H.-U., Wentzel, A., Kolmar, H. & Heinz, D. W. Barnase fusion as a tool to determine the crystal structure of the small disulfide-rich protein McoEeTI. Journal of molecular biology 356, 1–8 (2006). [Link]
Liu, Z. et al. Function and solution structure of Huwentoxin-X, a specific blocker of N-type calcium channels, from the Chinese bird spider Ornithoctonus huwena. Journal of Biological Chemistry 281, 8628–8635 (2006).
Hosse, R. J., Rothe, A. & Power, B. E. A new generation of protein display scaffolds for molecular recognition. Protein Science 15, 14–27 (2006). [Link]
Cheek, S., Krishna, S. S. & Grishin, N. V. Structural classification of small, disulfide-rich protein domains. Journal of molecular biology 359, 215–237 (2006).
Souriau, C., Chiche, L., Irving, R. & Hudson, P. New binding specificities derived from Min-23, a small cystine-stabilized peptidic scaffold. Biochemistry 44, 7143–7155 (2005). [Link]
Simonsen, S. M. et al. A continent of plant defense peptide diversity: cyclotides in Australian Hybanthus (Violaceae). The Plant Cell 17, 3176–3189 (2005).
Rodríguez de la Vega, R. C. A note on the evolution of spider toxins containing the ICK-motif. Toxin Reviews 24, 383–395 (2005). [Link]
McNulty, J. C. et al. Structures of the agouti signaling protein. Journal of molecular biology 346, 1059–1070 (2005).
Gelly, J.-C., De Brevern, A. G. & Hazout, S. ‘Protein Peeling’: an approach for splitting a 3D protein structure into compact fragments. Bioinformatics 22, 129–133 (2005). [Link]
Gelly, J.-C., Chiche, L. & Gracy, J. EvDTree: structure-dependent substitution profiles based on decision tree classification of 3D environments. BMC bioinformatics 6, 4 (2005). [Link]
Chattopadhyay, A. et al. Structure of the C-terminal domain from Trypanosoma brucei variant surface glycoprotein MITat1. 2. Journal of Biological Chemistry 280, 7228–7235 (2005).
Koh, J. L. et al. BioWare: A framework for bioinformatics data retrieval, annotation and publishing. Search and Discovery in Bioinformatics (2004). [Link]
Chiche, L. et al. Squash inhibitors: from structural motifs to macrocyclic knottins. Current Protein and Peptide Science 5, 341–349 (2004).