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ABSTRACT 

 

We developed a novel approach for predicting local protein structure from sequence. It 

relies on the Hybrid Protein Model (HPM), an unsupervised clustering method we previously 

developed. This model learns 3D protein fragments encoded into a structural alphabet of 16 

Protein Blocks (PBs). Here, we focused on 11-residue fragments encoded as series of 7 PBs 

and used HPM to cluster them according to their local similarities. We thus built a library of 

120 overlapping prototypes (mean fragments from each cluster), with good 3D local 

approximation, i.e., a mean accuracy of 1.61 Å C  rmsd. 

Our prediction method is intended to optimize the exploitation of the sequence-structure 

relations deduced from this library of long protein fragments. This was achieved by setting up 

a system of 120 experts, each defined by logistic regression to optimize the discrimination 

from sequence of a given prototype relative to the others. For a target sequence window, the 

experts computed probabilities of sequence-structure compatibility for the prototypes and 

ranked them, proposing the top scorers as structural candidates. Predictions were defined as 

successful when a prototype less than 2.5 Å from the true local structure was found among 

those proposed. Our strategy yielded a prediction rate of 51.2% for an average of 4.2 

candidates per sequence window. We also proposed a confidence index to estimate prediction 

quality. 

Our approach predicts from sequence alone and will thus provide valuable information for 

proteins without structural homologues. Candidates will also contribute to global structure 

prediction by fragment assembly. 
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INTRODUCTION 

 

Because of the importance of structural information for the functional characterization of 

proteins, the prediction of the three-dimensional (3D) structure of proteins from their amino 

acid sequences is a major scientific challenge. Currently, homology modeling yields the best 

results.
1,2

 However, this approach requires a template protein with a known 3D structure and 

clear sequence similarity to the protein to be modeled. The task is much more difficult when 

the target protein does not have obvious homologues in the Protein Data Bank (PDB).
3
 Fold 

recognition methods, which attempt to detect a structural template when sequence similarity is 

not immediately recognizable, can be an alternative,
4
 albeit only partial, because the structural 

database, while large, is not complete.  

Today, large-scale genome sequencing projects are producing numerous protein sequences 

for which there are no homologues with a known structure. Under these circumstances, any 

approaches that can provide information about 3D structure from the sequence alone (ab initio 

methods) are of great interest. As the last editions of the Critical Assessment of Methods for 

Protein Structure Prediction (CASP) show, successful predictions have been made for targets 

in the new fold category.
5-9

 These successes remain limited, however, and some proteins still 

cannot be predicted.  

Methods based on 3D fragment assembly have yielded the greatest progress in this 

field.
9,10,11

 Addressing the problem of local protein structure prediction from sequence may 

therefore constitute a first step towards global structure prediction. 

Considerable work has focused on analyzing the local conformations of available protein 

structures and trying to predict them from their sequences. The secondary structure provides a 

three-state description: repetitive -helices and -strands, and coils, which are defined as non-

helical and non-extended. This description of protein structures is nonetheless crude, despite 
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the numerous attempts to depict the connecting regions more precisely.
12-16

 

Many research groups have designed fragment libraries or structural alphabets to try to 

describe the local structural features of known protein structures more accurately.
17-29

 These 

libraries or alphabets correspond to finite sets of protein structural fragments. They can be 

differentiated according to a variety of characteristics, including number of clusters (ranging 

from 4 to several hundred), fragment length (fixed or variable, from 4 to 9 residues), 

geometric descriptors (e.g., C  coordinates, ,  dihedral angles) and clustering methods 

(e.g., hierarchical clustering, neural networks). These differences depend primarily on the 

particular goal. The library size, for example, governs the quality of the protein structure 

description: very generally, a relatively large number of clusters is required for precise protein 

structure reconstruction,
25,26,27

 whereas a small library facilitates the identification of relevant 

sequence-structure correlations when the goal is local structure prediction from 

sequence.
22,24,30 

 

A structural alphabet composed of 16 average protein fragments, 5 residues in length, 

called Protein Blocks (PBs), was developed in a previous work.
24

 These PBs have been used 

both to describe 3D protein backbones and to predict local structures.
31-34

 They have proved to 

be highly informative and useful for prediction purposes.
35 

 

The reliability of this structural alphabet for long fragments
31

 enabled us to develop an 

unsupervised clustering method, which we call a Hybrid Protein Model (HPM). This method, 

which can capture long-range features of a succession of PBs, compresses a structural protein 

databank into a limited set of clusters.
36,37,38 

 

The HPM training principle is similar to that of Kohonen‟s Self-Organizing Maps 

(SOM).
39,40

 Its originality is that it can learn long protein fragments previously encoded into 

series of PBs. HPM compacts a databank of such fragments into one “Hybrid Protein” (HP), 

by stacking them on the basis of the similarity of their PB series. Through this process, it 
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builds a library of clusters that group structurally similar fragments; each cluster is 

represented by a mean local structure prototype. Unlike standard clustering methods, HPM 

generates a library of overlapping prototypes. Its principal advantage is that it takes into 

account the dependence between successive local structures along the proteins by maintaining 

their continuity.  

Two main characteristics affect the features of the final library built by HPM: the length of 

the protein fragments and the number of clusters in the library. A first HPM of 100 clusters, 

grouping a series of 10-PB fragments, was used for fine description of protein 3D structures 

and efficiently identified local structural similarities between two cytochromes P450.
36

 

Subsequent examination of a new learning approach led to an HPM of 233 clusters that 

grouped a series of 13-PB fragments.
37

 Recent work has focused on improving detection of 

similarities between long fragments.
38

 

The principal concept of HPM can be compared with that of HMMSTR.
41

 As HPM 

extends the PB structural alphabet, HMMSTR extends the I-sites library.
22

 They both enable 

description of the continuities of different sequence-structure motifs observed in proteins and 

they both represent overlapping motifs in a compact form. Nevertheless, they differ 

substantially. HPM is linear whereas HMMSTR has a branched topology. HMMSTR is 

trained simultaneously on sequence and structure databases, while HPM is trained only on 

structural data. Significant amino acid properties are then deduced from the clusters.  

Our aim in this paper is to use HPM descriptions and features to predict local 3D protein 

structures from their sequences. For this purpose, we built a new HPM, modifying the number 

of clusters and the fragment length required. We also took advantage of the increased 

structural information provided by the PDB.
3
 Next, we used the library of local structure 

prototypes constructed by the HPM to develop a prediction strategy, aiming at optimizing 

exploitation of the sequence-structure relations in this library. This was achieved by setting up 
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a system of experts, each defined by logistic regression and best able to discriminate from 

sequence a given local structure prototype relative to the others. The experts then computed 

probabilities for each prototype for a target sequence window, and the top scorers become 

structural candidates. The results were analyzed with different evaluation schemes, and a 

confidence index was proposed to assess prediction quality. The structural prototype 

candidates can contribute to ab initio tertiary structure prediction as structural constraints or 

as fragments in combinatorial assembly. 

   

MATERIALS AND METHODS 

 

The structural alphabet 

The structural alphabet used in this work corresponds to a set of 16 short prototypes, 

each 5 residues in length, called Protein Blocks (PBs;
24

 see supplementary data 1). Each PB is 

defined by 8 dihedral angles (  and ). Very generally, PB m represents central -helices and 

PB d central -strands. PBs a through c primarily describe -strand N-caps, and PBs e and f, 

-strand C-caps. PBs g through j are specific to coils. Finally, PBs k and l and PBs n through 

p represent -helix N- and C-caps, respectively. This structural alphabet approximates local 

3D protein structures with a mean accuracy of 0.41 Å C  rmsd (root mean square distance 

between -carbon atoms).
34 

 

Structure databanks 

Protein databanks. A non-redundant set of 675 protein structures was selected from 

the PDB-REPRDB database
42

 according to the following criteria: X-ray structures with 2 Å or 

better resolutions, no more than 30% pairwise sequence identity, a C  rmsd value larger than 

10 Å between all representative chains. An updated databank, composed of 1,041 proteins, 
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was built from the same criteria. 

Each protein structure was encoded into the structural alphabet according to the 

following coding principle: every overlapping fragment of 5 consecutive residues of a given 

protein was assigned to the PB most similar according to its dihedral angles.
24

 The similarity 

criterion used is the rmsda (root mean square deviation on angular values).
20

 Hence, each 3D 

protein structure was encoded by a string of characters, or a series of consecutive overlapping 

PBs. 

 

Fragment databanks. Each protein structure, encoded in terms of PBs, was cut into 

overlapping fragments of L consecutive PBs. The positions for a given fragment are labeled 

from –w to +w, and the index 0 is assigned to the central PB. Hence, the fragment length is 

defined as L = 2w+1, with w equal to 3: the fragment length in our study is 7 PBs. Since each 

PB is a 5-residue fragment and the successive PBs are overlapping, each fragment of L PBs 

has a corresponding amino acid fragment of length L+4, similarly labeled from -(w+2) to 

+(w+2), that is, 11-residue fragments. The first databank was composed of 139,503 fragments 

and the updated one of 251,497 fragments.  

The first databank was used to train the Hybrid Protein Model. The training was 

carried out with three quarters of this databank (105,340 fragments), and the remaining 

quarter (34,163 fragments) was used to evaluate the Hybrid Protein stability. The second 

databank was divided into three subsets and used for prediction. Half the databank (the 

learning set) was used to compute the amino acid occurrence matrices (521 proteins; 125,074 

fragments). One quarter (the parameterization set) was used to establish the expert scoring 

functions (261 proteins; 62,194 fragments). Finally, the remaining quarter was used as a 

validation set to assess the prediction method (259 proteins; 64,229 fragments). 
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Construction of the structural prototype library 

Hybrid Protein Model. The structural prototype library is built by an unsupervised 

classifier named the Hybrid Protein Model (HPM), introduced in previous work.
36,37,38

 Its 

main principles are summarized in supplementary data 2. Briefly, the Hybrid Protein (HP) 

corresponds to a self-organizing neural network. It is characterized by a ring of N neurons, 

each representing a cluster of structurally similar 3D fragments. Its training strategy consists 

of learning the protein structure fragments encoded into series of L PBs, by stacking them 

according to their similarities. Similar but not identical series of PBs may be grouped in the 

same cluster. The result is equivalent to a multiple structural alignment of the local protein 

structure fragments. Stacking allows the building of a “PB profile”, that is, a series of PB 

probability distributions. Each region of this PB profile is L successive PB distributions in 

length and characterizes a cluster of structurally similar fragments, represented by a mean 

local structure prototype. The successive regions are overlapping and have (L-1) probability 

distributions in common, thereby defining overlapping local structure prototypes.  

 

Definition of the structural prototypes. At the end of HPM training, each neuron or 

cluster, noted s (s varying from 1 to N), was associated with a set of 3D protein fragments 

(L+4) = 11 C  long. For each cluster, we computed the pairwise C  rmsd values between all 

the fragments and we selected a representative structural prototype, Ps, which corresponds to 

the fragment with the smallest sum of C  rmsd values of all the fragments in the cluster. We 

next ensured that each fragment was assigned to the closest prototype, that is, that with the 

smallest C  rmsd value. 

 

Characterization of the relation between amino acid sequence and structural prototype 

Relative self-information matrices. To analyze the sequence-structure relations, we 
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considered enlarged sequence windows [-m; +m] of length M = 2m + 1, with m = (w + 7). 

These correspond to a final window of M = 21 residues, to take account of the amino acid 

information content in the neighbourhood. We computed for each cluster an amino acid 

occurrence matrix of dimensions M x 20. This matrix was then translated into a “relative self-

information matrix”. The “relative self-information content” is(y,AAk) of a given amino acid 

AAk (k = 1, …, 20) in position y of the relative self-information matrix (y varying from –m to 

+m) for a given local structure prototype Ps (s = 1, …, N) is equal to: 

)(

),(
ln),(

kR

ks
ks

AAp

AAyp
AAyi                                               (1) 

ps(y,AAk) corresponds to the probability of observing amino acid AAk in position y of the 

sequence windows of the fragments associated to the local structure prototype Ps. pR(AAk) is 

the reference frequency of the amino acid AAk in the databank. The amino acid relative self-

information content is positive (respectively, negative) when the amino acid is 

overrepresented (respectively underrepresented). 

 

Analysis of the amino acid information content. To analyze the amino acid information 

content of each position y of the sequence windows associated with a given local structure 

prototype Ps, we computed the relative entropy, defined by the asymmetric Kullback-Leibler 

discrepancy, KLds(y).
43

 It corresponds to the mathematical expectation of the relative self-

information content of all the amino acids in position y: 
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This index measures the contrast between the amino acid frequencies observed in position y 

for structural prototype Ps and their reference frequencies. The significance of the KLds(y) 

value is assessed by a ² test, since the quantity (2.NFs.KLds(y)), with NFs the number of 
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fragments (or sequence windows) associated with the local structure prototype Ps, follows a 

² distribution with 19 degrees of freedom. 

 

Strategy for predicting local protein structure from sequence 

The prediction strategy we propose is based on an expert system. One expert was 

defined for the optimal discrimination from amino acid sequences of a given local structure 

prototype relative to the others; there were N experts, one for each of the N local structure 

prototypes of the library. An overview of the prediction strategy is shown in Figure 1. For a 

target sequence window W of unknown local 3D structure, each expert gives its diagnosis, 

that is, the probability that the sequence window fits the structural prototype it characterizes. 

A jury then selects from among these diagnoses the structural prototype candidates for a given 

decision rule. The jury can also assess the candidate list by a confidence index.  

 

Characterization of the expert system. We determined each expert by logistic 

regression (R software
44

). The logistic function computes the probability that a given 

sequence window W belongs to the 3D fragment cluster represented by the local structure 

prototype under study, Ps. We used the parameterization set, from which two learning subsets 

of 3D fragments were defined for this logistic regression. The first subset, called the “positive 

set”, is composed of fragments assigned to the prototype Ps cluster; the second or the 

“negative” set, is composed of an equivalent number of 3D fragments taken randomly from 

the other clusters. For each fragment of these two sets, we derived its “self-information input 

vector” from its corresponding amino acid sequence window W. The relative self-information 

content of the M amino acids of the sequence window W, defined from the relative self-

information matrix of Ps, constitutes the elements of this input vector. Hence, the y
th

 element 

of this input vector is the quantity is(y,AAk), AAk denoting the amino acid in position y in the 
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sequence window W. 

The logistic function or score p(W / Ps) quantifies the probability of the compatibility 

or fit between the sequence window W and the local structure prototype Ps. It is expressed as: 

)(exp1

1
)/(

W
Wp

s
sP                                         (3)                       

with      

my

my
ksy AAyiwwWs ),()( 0                                      (4) 

This logistic regression is well suited for optimally discriminating between the negative and 

positive fragment sets. The weights wy allow it to assess the contribution to each expert's 

discriminatory power of the amino acids located in the different positions y of Ps. The 

significance of each weight is assessed by a t test.
44

  

To assess the relevance of each logistic regression, we determined the minimal error 

risk, denoted Rmin. It corresponds to the minimal average fraction of false positives (that is, 

sequence windows of the negative set classified as positive) and false negatives (sequence 

windows of the positive set classified negative) obtained for a probability threshold pRmin. 

 

Jury and decision rule. For a target sequence window W, each expert assesses the 

sequence-prototype fit by computing the probability p(W / Ps). A jury selects the best 

structural prototypes as candidates for the local 3D structure from among the N probabilities, 

ranked in descending order. The decision rule for selecting prototype candidates has two 

criteria: (i) p(W / Ps) > p0, with p0 a user-set threshold for sequence-structure fit, and (ii) a 

fixed maximum number of candidates.  

 

Evaluation of the candidates. The prediction strategy was assessed by applying it to 

the validation set proteins. Two evaluation schemes were tested. In the first a prediction for a 
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target sequence window was defined as successful when the prototype assigned from the 

structure was found among the candidates proposed from the sequence. The second used a 

geometric evaluation: a prediction was defined as successful based on its C  rmsd from the 

true local structure. Different degrees of approximations were considered, that is, 1.5 Å, 2 Å, 

and 2.5 Å. For reference purposes, the distribution of the C  rmsd of pairs of unrelated 11-

residue fragments selected randomly from the databank has a mean of 4.5 Å (standard 

deviation, sd  = 1.1 Å, see supplementary data 3). To assess the quality of our prediction 

strategy, we also compared the rates we obtained to rates computed from lists with the same 

number of local structure prototypes randomly drawn from the library.  

 

Confidence index for assessing the selected prototype candidates. A confidence index 

CI was defined to assess the list of prototype candidates. Its aim was to quantify the 

probability of finding a successful candidate among those proposed. Here, successful is 

defined as having a C  rmsd less than 2.5 Å from the true local structure. We began by 

dividing the fragments of the training set into two subsets: the first contained fragments for 

which at least one successful candidate was found among the proposed local structure 

prototypes, and the other grouped fragments with no successful candidate. A new logistic 

regression used an input vector composed of one a priori and three a posteriori data items. (i) 

A priori information related to the target amino acid sequence window: amino acid classes. 

We subdivided the 20 types of amino acids into four classes. The first two correspond to G 

and P, the third to the hydrophobic amino acids (I, V, L, M, A, F, Y, W, C), and the fourth 

one to polar amino acids (H, S, T, N, Q, D, E, R, K). The target sequence window was then 

encoded according to these classes. (ii) Information about the selected prototypes. We 

included a Boolean vector indicating for each of the N local structure prototypes whether it 

was selected as a candidate by the jury (1 if selected, elsewhere 0). (iii) Information about the 
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proportions of observed probabilities of sequence-prototype compatibility. The next elements 

of the input vector correspond to the proportions of probabilities within the ranges [0.9; 1.0], 

[0.8; 0.9], [0.7; 0.8], [0.6; 0.7] and [0.5; 0.6] among the N prototypes computed. (iv) 

Information about the levels of the observed probabilities. Finally, we added the differences 

between some probability values, according to their rank: (1 – p1), (p2 – p1), (p5 – p2), (p10 – 

p5) and (p60 – p10), with pk denoting the kth probability. 

From the input vectors derived for all sequence windows of the training set, we 

estimated the optimal weights of the logistic function (see equation 3) to discriminate between 

the lists with and without a successful local structure prototype candidate. Next, we divided 

the distribution of the probabilities p given by the logistic function into 6 levels of confidence 

ranging from CI = 1 (low confidence) to CI = 6 (high confidence), based on  the variation of 

the error risk. We assessed the relevance of the confidence index by computing the prediction 

rates according to the 6 levels of confidence for the validation set. 

 

RESULTS 

 

We built a library of representative protein structural prototypes to use for predicting 

protein local structures. We first examine the structural features of this library and then 

analyze the relation between amino acid sequences and local structure prototypes. We then 

assess the prediction strategy. Our approach is based on the use of an expert system able to 

discriminate local structure prototypes from amino acid sequences. An interesting point of this 

methodology is that it proposes not one but several structural prototype candidates. Analysis 

focuses on the expert system and the assessment of the proposed structural prototype 

candidates. 
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Construction of a library of 120 structural prototypes 

The best library of structural prototypes, i.e., the best Hybrid Protein (HP), was 

obtained after testing different numbers of clusters. We began testing with large numbers of 

clusters and selected the final HP as the best balance between many clusters and enough 

fragments per cluster to permit prediction. We checked the low structural variability of each 

cluster (see below). Figure 2 shows the final HP and its main features. It corresponds to a 

library of 120 clusters of 11-residue protein fragments (7 PBs). Each cluster shares similar 

local structures and is associated with a representative local structure prototype. The 

successive prototypes overlap. 

 

A structural profile characterizes the prototype library. The Hybrid Protein matrix of 

PB distributions (see Figure 2a) is equivalent to a “structural profile” obtained by stacking the 

fragments encoded as PBs. The profile reveals interesting features. First, high structure 

specificity is observed along the HP since only a few PBs characterize each site. There are 

long series of identical PBs that correspond to repetitive structures. They mainly involve two 

specific PBs, d and m. In previous studies,
24,34

 we have shown the strong correspondence 

between PB m and the central part of the -helix, and to a lesser extent between PB d and the 

central part of the -strand. Thus, the stretches of PB m correspond to helical structures (see 

for example prototype #24 in Figure 2d, visualized with VMD software
45

), while those of PB 

d globally characterize extended structures (see prototype #10 in Figure 2d). Three series of 

PB m are distinguishable, located in HP regions [#21 - #29], [#39 - #45] and [#67 - #71]. Six 

series of PB d are observed. Certain are highly specific to PB d, see, e.g. [#8 - #13], while 

others are associated with PBs related to extended structures, such as PBs b and c, see, e.g., 

[#76 - #83]. The lengths of these series vary, depending on their location. They also differ by 

their local environment, that is, by the nature of the neighboring prototypes.  
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Figure 2b shows the number of protein fragments associated with the different 

clusters; it ranges from 308 to 4028. The first helical region [#21 - #29] is the most heavily 

populated, and the most fragments are associated with cluster #24. The fragments are more 

evenly distributed for the extended structures.  

Substantial diversity of the local structures is observed for the non-repetitive HP 

regions that connect the repetitive regions. Interestingly, structure specificity is high, with 

clear PB signatures. For instance, the HP region [#27 - #33] corresponds to the exit of a 

helical structure defined by a well determined PB series, that is, mmmnopa (e.g., see prototype 

#30 in Figure 2d). These kinds of particular signatures are highly recurrent in protein 

structures, as seen by their frequencies in Figure 2b. Other HP connecting regions are 

characterized by more PBs per site, e.g. the region [#85 - #91], which connects two extended 

structures.  

 

Low geometric variability within each cluster. We want to stress that the clusters are 

defined by grouping the protein fragments according to their similarity in terms of a PB 

series. Thus, similar but not identical series of PBs may be grouped in the same cluster. To 

assess the quality of the 3D approximation, we computed a posteriori for each cluster its 

average C  rmsd value (see Figure 2c), which we obtained by superimposing all the 11-C  

fragments of a cluster with their representative structural prototype. The local structure 

prototype of a cluster corresponds to the fragment closest in terms of C  rmsd values to all 

the other fragments in the cluster. This prototype may thus be described both by its PB series 

and by its C  coordinates. The average C  rmsd value of 1.61 Å (standard deviation, sd = 

0.77 Å) indicates that the geometric variability of the prototypes is low. This local structure 

approximation is quite satisfactory for fragments 11 residues long, since the random value for 

this length residue is 4.5 Å (sd = 1.1 Å, see supplementary data 3). The C  rmsd values 
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computed for each cluster vary within the range [0.28 Å - 2.44 Å]. Cluster #26, located in the 

main repetitive helical region, has the lowest C  rmsd value, and cluster #113, in a region 

connecting two extended structures, has the highest (see supplementary data 4 for details).  

 

Prototype comparisons. HPM uses the structural dependence between successive local 

structures along the proteins to build this library of overlapping prototypes. The originality of 

this method therefore is to ensure the continuity between successive local structure 

prototypes. This property of continuity necessarily leads to a certain structural redundancy, 

that is, some Hybrid Protein regions may be structurally close. These similar prototypes, 

however, are differentiated by their transitions -- the prototypes that precede and follow them. 

We investigated the extent of this structural redundancy by computing the C  rmsd 

values obtained by the optimal pairwise superimposition of all 120 local structure prototypes 

(see Figure 3). This analysis showed that the structural redundancy was actually fairly weak. 

The C  rmsd value for most of the prototype pairs was greater than 2.5 Å (displayed in blue). 

The mean C  rmsd value was equal to 3.9 Å (sd = 1.0 Å). Of the total of 7140 prototype 

pairs, only 0.4% (31 pairs), 0.3% (21 pairs) and 1.8% (124 pairs), respectively, corresponded 

to prototypes less than 1 Å (in red), from 1 Å to 1.5 Å (in orange), and from 1.5 Å to 2 Å (in 

yellow). As expected, these pairs mainly involved prototypes located in repetitive HP regions. 

For instance, all the pairs within the helical region [#23 - #27] are less than 1 Å apart (see the 

red square in the bottom left corner). This figure also shows structurally similar prototypes 

belonging to distant HP helical regions: prototypes #22, #23 and #24 are less than 1 Å from 

prototypes #41 and #42. Similarities are also observed between extended regions, such as  

regions [#8 - #12] and [#96 - #100], and between non-repetitive regions, such as the helical 

capping regions [#20 - #22] and [#66 - #68].  
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Relations between amino acid sequence and structural prototype 

After we built the library of structural prototypes, we sought to assess the specificity 

of the amino acid sequences associated with each cluster. We therefore computed an amino 

acid-related self-information matrix for each cluster (see Methods section). We showed in an 

earlier study
24

 that prediction can be improved by enlarging the sequence window to five 

residues on each side. Hence, we considered enlarged sequence windows, 21 residues in 

length (noted from -10 to +10 and centred at 0) to take account of the amino acid content in 

the neighbourhood. The elements of the self-information matrices, i.e., self-information 

content, provide information for each amino acid at each position. Positive (respectively 

negative) self-information content corresponds to overrepresented (respectively 

underrepresented) amino acids. The sequence information content of the different amino acid 

self-information matrices is measured by the asymmetric Kullback-Leibler discrepancy 

(KLd).
43

 This index highlights the most informative positions. 

 

All the clusters of the library show significant amino acid sequence specificity. Using 

the KLd index, we determined that the number of significantly informative (  < 0.001; see 

Methods section) positions per self-information matrix ranged from 4 to 20 of 21, with a 

mean of 12.6. These positions are located mainly in the central region (from -5 to +5). The 

average number of informative positions among the 11 central positions equals 9.4. The most 

informative matrix is associated with cluster #27, which characterizes the exit from a helical 

structure. The least informative matrices are located in HP region [#50 - #53], where there are 

a relatively large number of PBs.  

Figure 4 illustrates the representative local structure prototypes of clusters #67 and #15 

(Figure 4a), their relative self-information matrices (Figure 4b) and their KLd distributions 

(Figure 4c). Cluster #67, corresponding to the N-cap of a helical structure, is highly 
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determined in both structure (mean C  rmsd = 1.06 Å) and sequence (the KLd index 

highlights 14 informative positions). We observe high over- and underrepresentations 

(displayed respectively in red and blue, see caption of Figure 4 for details) of different amino 

acids, mainly in the central positions. These over- and underrepresentations are numerous at 

each position (vertical lines) and along the positions (horizontal lines). For instance, (P, G, S, 

T, D) are overrepresented in position -3. Several other overrepresentations, such as (Q, D, E, 

K) and (A, L, M), are also observed in other positions. There are also many 

underrepresentations, principally in position -3 (vertical blue line) where 11 of the 20 amino 

acids, mainly hydrophobic, are underrepresented. This is the most informative position of the 

matrix, with a KLd value equal to 0.43 (see Figure 4c). These amino acid preferences are 

consistent with those normally observed in helical structures and in helix-capping motifs.
46

 

Cluster #15, which corresponds to the exit from an extended structure, is slightly less 

structurally determined (average C  rmsd = 1.96 Å) and less sequence-dependent (8 

informative positions defined by the KLd index) compared with cluster #67. Among the 

amino acid preferences we observe overrepresentations of I and V in positions -4 to -2 and of 

P and D in positions [-1, 0]. These preferences are also consistent with other descriptions.
47 

 

 

Now that we have shown strong sequence-structure correlations in our library, our 

goal is to exploit this information for prediction purposes. Our previous prediction methods 

were based solely on the use of amino acid occurrence matrices and Bayes‟ rule.
24,33,34

 To go 

further in exploiting the relations between sequence and structure, we developed an improved 

prediction strategy that relies on an expert system. The experts' principal task is the 

discrimination of a particular local structure prototype relative to the others on the basis of the 

amino acid sequence.  
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Analysis of the expert system  

For each cluster of the library, we determined an expert able to distinguish between 

amino acid sequence windows that belong to the cluster, i.e. that adopt its local structure, and 

those that do not belong to the cluster (that is, the positive and negative subsets; see Methods 

section). The expert of each cluster was defined by a logistic function. It computes the 

probability of sequence-structure compatibility between a given target sequence window and 

its local structure prototype. Each logistic function was characterized by 21 optimized 

weights, one per position of the self-information matrix (see equations 3 and 4). Figure 4d, for 

example, shows for clusters #67 and #15 graphic indicators of the significance level of the 

weights assigned to the different positions of their self-information matrices (see caption for 

details). Positions with three stars contribute highly to the expert's discriminating power. In 

most cases, the positions with statistically significant weights are those for which the KLd 

values indicate strong amino acid specificity, e.g., positions [-4; -3] and [-1; 1] for cluster #67 

and, positions [-2, 0, 1] for cluster #15. A few positions not considered informative by the 

KLd index are nonetheless significantly related to the expert's discriminatory power and are 

thus assigned high weights, e.g., position -5 compared to -2 and 3 of cluster #67. We also note 

that the enlargement of the sequence window captured additional information, as we can see 

from the stars assigned to positions located outside the central region, e.g., positions -7, 6, 7 

and 10 of cluster #15. 

 

Assessment of the experts’ discriminating power. To assess the discriminating power 

of each expert, we analyzed the distributions of the probabilities computed for the positive 

and negative subsets. As expected, the shapes of these distributions show most probabilities 

are close to 0 for the fragments that do not belong to the cluster (negative subset), and most 

are close to 1 for the fragments that do (positive subset; see supplementary data 5 which 
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depicts the distributions for cluster #67). The quality of discrimination for each cluster is 

assessed by analyzing the minimal average fraction of false-positive and false-negative 

fragments (defined as the minimal error risk, Rmin, see Methods section). Overall, we found an 

average Rmin equal to 25% (sd = 3.8%), corresponding to a pRmin about 0.5. This means that an 

expert correctly discriminated the right cluster for 75% of the sequence windows, on average. 

Rmin values for the different clusters range from 16% (cluster #7, good structure determination 

and strong sequence specificity) to 35.3% (cluster #52, only 8 informative positions but 

structurally well determined).  

  

Thus, we set up a system of experts and assessed the power of each to discriminate a 

given local structure prototype of the library from sequence, relative to the others. The 

paragraphs below focus on the assessment of our new prediction method. 

  

Local structure prediction from sequence 

 A classic strategy would propose only the local structure prototype for which the 

associated expert returned the highest probability, that is, each sequence window would be 

associated with one predicted prototype. Due to the size of our library (120 prototypes), 

however, several prototypes have high probabilities. We thus chose a strategy that selects a -- 

limited -- series of candidates, i.e., each sequence window is associated with one or a few 

predicted local structure prototypes. In practice, our strategy relies on the jury's decision rule, 

which ranks the prototypes associated with a high probability of sequence-structure 

compatibility (larger than a given threshold p0) into a list of structural prototype candidates 

for a target sequence window. 

The prediction was tested on a validation set of 259 proteins for each position along 

the target protein sequences. The lists of local structure prototype candidates were evaluated 
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under two schemes. The first, based on prototypes, retrieved the prototype assigned from 

structure among those predicted from sequence. This scheme is very stringent for a library the 

size of ours -- 120 clusters. A second evaluation scheme, based on C  rmsd to the true local 

structure, was thus considered: it looked for at least one prototype candidate in the list 

structurally close to the true structure. It provided a more realistic and appropriate evaluation 

of the prediction's validity.    

  

Optimal probability threshold for sequence-structure compatibility. For each expert, 

we set a probability threshold, noted p0 (see above): above this threshold, the sequence 

window was considered associated with the prototype, otherwise not. To minimize the 

proportion of false-positive sequence windows, a threshold value p0 substantially greater than 

pRmin was chosen. This choice is made to the detriment of the true positives. After a systematic 

search, we set p0 to 0.8. This value was applied to all the experts, as it ensures similar 

proportions of false positives, with a mean of 5% (see example of cluster #67 in 

supplementary data 5). 

For a given target sequence window, several experts may return a compatibility 

probability more than the threshold, thereby producing a list of local structure prototype 

candidates. The jury ranks them according to their probability values. The target sequence 

windows for which no candidate was proposed accounted for only 1.6% of the validation set. 

For these sequence windows, there were no prototypes with a probability above the threshold 

(p0 = 0.8). When we exclude these windows, the number of prototype candidates per target 

sequence window averaged 6.3 (sd = 3.8). Less than 2.9% of the sequence windows had more 

than 15 prototype candidates among 120. 

 

Evaluating the proposed lists of prototype candidates. The first evaluation scheme, 
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based on the assigned prototype, yielded a prediction rate of 35.0%; that is, experts were able 

to recognize on average 35.0% of the fragments belonging to their cluster solely from 

sequence information. This rate is clearly satisfactory given the size of the library. Moreover, 

it is significantly greater than the 5.1% rate obtained by randomly drawing the same number 

of prototype candidates from the library for each target sequence window. In addition, the 

top-scoring prototype candidate corresponded to the assigned structure with a frequency of 

11.5%. This rate is also clearly better than the random rate (0.8%) for such a large library. 

 

 Geometric evaluation. The second evaluation scheme is based on a threshold C  rmsd 

distance from the true local structure. This geometric evaluation is more appropriate since it 

takes into account the structural similarity of certain local structures to more than one 

prototype. Hence, it takes advantage of the structural proximity of some prototypes (see 

paragraph Prototype comparisons). The assigned prototype provides the best local 

approximation in terms of C  rmsd, but other prototypes may also provide good 3D 

approximations, albeit not the best.  

Three C  rmsd thresholds - 1.5 Å, 2 Å and 2.5 Å – were used to quantify the 

prediction rates. They have not been used to define the clusters but are related to the 

geometrical characteristics deduced a posteriori from each cluster (see Figure 2c). The 

threshold of 1.5 Å is very stringent for fragments as long as 11 C , while 2.5 Å is close to the 

mean C  rmsd value (2.44 Å) for the most variable cluster of the library (see paragraph Low 

geometric variability within each cluster). Even this threshold is stringent in comparison with 

the random value of 4.5 Å (sd = 1.1 Å), and the probability (or p-value) for a random match 

with C  rmsd < 2.5 Å is 10
-2

 (see supplementary data 3).  

Table I shows the prediction rates and the improvements over random rates when 

setting a maximum number of allowed candidates (noted MNAC). Our strategy produces a 
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variable number of candidates per sequence window. Accordingly, the mean number of 

candidates is always less than the MNAC value, as some sequence windows have fewer 

candidates proposed. For instance, for MNAC = 7, the mean number of candidates is 5.1. The 

prediction rate when considering only the top-scoring candidate (MNAC = 1) equals 29.5% 

for a C  rmsd threshold of 2.5 Å. This value is clearly satisfactory given that the predictions 

are based on sequence information alone and with a large library of prototypes. As expected, 

the prediction rate decreases with stricter thresholds: 20.6% for 2 Å and 13.6% for 1.5 Å. It is 

nonetheless significant in such a context. When we considered the candidate lists, with a 

mean of 6.3 candidates, the prediction rate reached 55.4% for a threshold of 2.5 Å (38.3% for 

2 Å and 23.7% for 1.5 Å).  

To assess our prediction strategy, we compared these rates with prediction rates from 

lists of the same numbers of prototypes randomly drawn from the library. The prediction rate 

increased with the number of proposed candidates, but so did the random prediction rate. The 

difference between these rates is thus a good indicator of prediction quality. Our method 

showed clear improvements over random selection for all MNAC values and all thresholds. 

More importantly, the margin between the prediction strategy and random choice was highest 

when there were only a few prototype candidates per sequence window. Thus, for a MNAC = 

5 (corresponding to an average value of 4.2 candidates), the prediction rate was 51.2% for a 

threshold of 2.5 Å (significantly better than the random rate, with a gain of 29.3%), 35.1% for 

2 Å (improvement over random of 24.3%) and 22.2% for 1.5 Å (improvement of 17.0%). In 

view of these satisfactory results, the maximum number of candidates per sequence window 

was set at 5. We discuss the resulting lists in detail below. 

 

 Analysis of the prediction with four categories of prototypes. To provide a simplified 

evaluation of the prediction results, we defined four categories of prototypes, relative to the 
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secondary structures. They were obtained by hierarchical clustering of the prototypes from the 

matrix of C  rmsd shown in Figure 3 (see supplementary data 6 for details). These rough 

categories are defined as helical, extended (core), edges (inputs and outputs of extended 

structures) and connecting structures. These categories include 16, 13, 40 and 51 prototypes, 

respectively. The proportion of fragments from the validation set in each category is 

respectively 26.9%, 10.6%, 23.8% and 38.7%. Proportions are similar for the training set. 

Table II summarizes the contribution of the different categories of prototypes in the 

prediction results. The prediction rate was high for the helical prototypes -- 70.1% for a C  

rmsd threshold of 2.5 Å. The rates were also quite satisfactory for the strictest accuracy levels, 

e.g., 53.1% for a 1.5 Å-C  rmsd threshold. Improvements over random selections range from 

48.3% to 53.0%. This category contains slightly fewer candidates, an average of 3.9. The 

prediction rate was also high for the prototypes corresponding to the core of relatively large 

extended structures -- 52.6% for a C  rmsd threshold of 2.5 Å, 30.7% better than the random 

case. The third category (named edges) actually unites shorter extended structures and edges. 

Predictions rates were also satisfactory at a 2.5 Å threshold for this category (43.3%) and for 

the last, which groups prototypes corresponding to connecting structures (42.4%). The least 

stringent C  rmsd threshold must be considered here since these categories are the most 

variable and their flexibility makes them hard to predict. Improvement over random 

prediction remains significant at approximately 20% at 2.5 Å.  

Analyzing the prediction results for individual prototypes (see supplementary data 7), 

we found that each of the 120 prototypes contributed to the global predictions rates. At the C  

rmsd threshold of 2.5 Å, the individual prediction rates ranged from 18.6% for cluster #6 to 

76.9% for cluster #26. The prediction rate exceeds 40% for 84 prototypes. For a stricter 

accuracy level, e.g. 2.0 Å, high prediction rates were obtained for prototypes belonging to the 

different categories even the most variable ones, e.g. 60.4% for prototype #67. In addition, we 
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observed that the prediction rate of a local structure prototype was related to its cluster mean 

C  rmsd value (see supplementary data 8). 

 

Six confidence levels assess the lists of prototype candidates. We defined six 

confidence levels for these predictions, from CI = 1 (low confidence) to CI = 6 (high 

confidence). They were obtained by a logistic regression intended to provide optimal 

discrimination between the lists that do and do not contain a successful prototype candidate at 

the C  rmsd threshold of 2.5 Å. The input vectors included various items of information, 

about the amino acid target sequence window, the selected prototype candidates and their 

probabilities (see Methods section). These were selected as those that best discriminated 

between lists with and without successful candidates. An optimal weight was estimated for 

each, and its contribution to the discriminatory power of the logistic function assessed by a t 

test. 

Table III summarizes the prediction results for the validation set, according to the six 

confidence levels. Results were similar for the training set. The logistic regression was 

conducted for a threshold of 2.5 Å but the results were also analyzed for 1.5 Å and 2 Å. The 

results show that the confidence levels defined are good indicators of the probability of 

finding a successful candidate among those proposed. 27.2%, 11.4% and 8.6% of the target 

sequence windows were assigned to CI = 4, CI = 5 and CI = 6, respectively, the three highest 

levels of confidence; prediction rates for those levels reached 60.8%, 75.5% and 85.8%, 

respectively for a threshold of 2.5 Å. The confidence index is also relevant for thresholds of 

1.5 Å and 2 Å. We also analyzed the confidence levels for predictions for the four prototype 

categories defined above (see supplementary data 9). The level of confidence was highest for 

the helical structures (63.2% were assigned to the three highest confidence levels, with 22.9% 

in CI = 6) but was also high for the other categories (assignments to the three highest 
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confidence levels accounted for 54.3% of the core of extended structures, 41.2% of the edges 

and 37.7% of the connecting structures). 

 

Examples of prototype candidates. Figure 5 shows examples of the prototype 

candidates proposed for Escherichia coli signal transduction protein CheY (PDB code 

3CHY).
48

 It is an alpha and beta protein, 128 residues in length. The prediction rate for this 

protein reached 63.9% for the C  rmsd threshold of 2.5 Å (50.0% for 2 Å and 36.1% for 1.5 

Å), and 67.6% of the protein fragments were assigned to the three highest prediction 

confidence levels, with 18.5% in CI = 6. Four examples of predictions are displayed in Figure 

5, with the true local structure (in red), the assigned prototype (in green), and the selected 

prototype candidates (in blue). 

The example labeled (a) corresponds to a helical structure with its exit. The assigned 

prototype, #28, provides an accurate 3D local approximation (C  rmsd = 0.50 Å). The 

prediction results show that the latter is the top-scoring candidate, with a high probability of 

sequence-structure fit (p = 0.99). Two additional candidates are proposed: #69 and #41, which 

have lower compatibility probabilities (p = 0.86 and p = 0.81, respectively) and provide less 

accurate approximations of the true local structure, at distances of 2.49 Å and 1.91 Å. These 

local structures are nonetheless at least partially satisfactory, especially the second candidate, 

for the orientation of its exit. The confidence level assigned to this prediction is the highest, 

CI = 6.  

Example (b) corresponds to the input of an extended structure. Five candidates with 

extended structures are proposed, and the top scorer is the assigned prototype, #59. It 

approximates the true local structure, with a C  rmsd value of 1.02 Å. The second candidate 

also provides an acceptable local approximation (2.20 Å), but the three last candidates have 

C  rmsd values greater than 2.5 Å, the least stringent threshold. The confidence level for this 
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prediction is 5. 

 The two last examples, (c) and (d), correspond to loops. In the global structure, they 

connect an -helix to a -strand, and a -strand to an -helix, respectively. The confidence 

levels for these predictions are low -- 2 and 3, respectively. Only one candidate is proposed 

for example (c), and its sequence-structure compatibility probability is relatively low (p = 

0.86). It does, however, provide an acceptable approximation (2.12 Å). This result is 

especially satisfactory since the assigned prototype gives an approximation of 2.09 Å. This 

also emphasizes the fact that prototypes proposed as candidates but different from the 

assigned one can provide good 3D approximation. Finally, an unsuccessful prediction result is 

shown in example (d). Here, the assigned prototype is 3.05 Å-C  rmsd from the true local 

structure. Thus, the prediction is necessarily unsuccessful despite a high probability of 

sequence-structure compatibility for the candidate. 

 

DISCUSSION AND CONCLUSION 

  

This paper is a first attempt to exploit the features of the Hybrid Protein Model 

(HPM), an unsupervised clustering method introduced in previous work
36,37,38

 for predicting 

local 3D protein structures from amino acid sequences. Here, HPM is used to construct a 

library of 120 clusters grouping series of 7-Protein Block (PB) fragments, 11 residues in 

length. The prediction method we propose takes advantage of the sequence-structure relation 

deduced from HPM for long fragments, but also aims at optimizing the discrimination 

between the clusters on the basis of sequence.  

 

A first point that requires discussion concerns the choice of the fragment length and of 

the number of clusters (or local structure prototypes) in the library. The parameters chosen 
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ensure a good balance between accurate description of 3D local structures and tractable 

prediction objectives. The fragment length of 7 PBs is shorter than we used in previous 

studies because we have found it to be clearly more appropriate and realistic for prediction 

than 10 or 13 PBs.
36,37

 It corresponds to a length of 11 residues. A major advantage of using 

long fragments is that they capture long-range correlations, but as fragment length increases, 

the completeness of the fragment databases becomes a limitation. Nonetheless, the number of 

protein structures in the PDB has increased enormously in the last few years, and the 

observation is that the number of new-found folds is decreasing.
6
 In addition, in a recent 

work, Du et al. (2003)
49

 argued that there currently exists sufficient coverage to model even a 

novel fold using fragments from the PDB.   

The principal characteristic of HPM is that it learns protein 3D fragments previously 

encoded into series of PBs. Two important points must be considered here: (i) the 16 PBs 

have proved reliable for long fragments, and (ii) the transitions between successive PBs are 

highly specific and lead to a limited number of PB combinations. A study focusing on the 

extension of the local backbone description identified the 72 most frequent series of five PBs, 

called Structural Words (SWs).
31

 These provide good structural approximations for fragments 

that are already fairly long, i.e., nine residues long and cover 92% of the amino acids. HPM is 

a probabilistic approach that goes further than the SW analysis. It enables us to capture the 

longer-range features of successions of PBs and condenses these long local structures 

according to the features they have in common. It also takes account of the structural 

dependencies observed in proteins. Unlike the SWs, HPM groups together similar but not 

always identical PB series and makes it possible to define a PB profile. 

Using 120 prototypes ensures a good quality of 3D local approximation for 11-residue 

fragments, with a C  rmsd of 1.61 Å between the fragments and their closest prototype. The 

main geometric features of 11-residue protein fragments have thus been captured. As the 
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number of local structure prototypes in the library is relatively large, these last may contribute 

to define and describe the boundaries of the secondary structures more accurately. It must be 

noticed that all the protein fragments are classified here; we have not removed outliers, 

contrary to other studies.
e.g.,26

 In addition, The 120 clusters are sufficiently populated to 

identify relevant sequence-structure dependencies.  

Many studies have investigated the classification of protein fragments, but only few 

for the purpose of local structure prediction.
e.g.,22,27,30

 A direct comparison with our library is 

difficult because of major differences in characteristics, such as fragment length and number 

of clusters. Hunter and Subramaniam (2003)
30

, for example, used a 28-cluster basis set of 

seven-residue prototypes, obtained from a hypercosine clustering method; it models the 

backbone structure with a mean accuracy of 1.23 Å C  rmsd.  

 

The prediction approach proposed here focuses on the ability to discriminate local 

structure prototypes from sequence. Our previous prediction methods used amino acid 

occurrence matrices and Bayes‟ rule,
24,33,34

 as other works have.
30

 Here, we developed an 

improved prediction strategy relying on a system of experts to optimize the exploitation of 

sequence-structure relations.  

The prediction rate was 51.2%, a rate 29.3 percentage points higher than random 

prediction, for an average of 4.2 candidates per sequence window and a C  rmsd threshold of 

2.5 Å. The threshold of 2.5 Å is strict in comparison with the random value of 4.5 Å for 11-

residue fragments. Beyond this threshold, the difference between the actual and random 

prediction falls, to 25.3% at 3 Å. This point further supports the validity of the threshold of 

2.5 Å. Moreover, it must be noted that Yang and Wang (2003)
27

 used a threshold of 2.4 Å to 

evaluate the percentage of nine-residue segments correctly predicted by their methodology.  

The use of a system of experts, each characterized by a logistic function, has thus 
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proved effective. In addition, the expert system ensures that each prototype contributes to the 

global prediction rate, with satisfactory individual prediction rates. A major advantage of 

logistic regression is that the expert's discriminatory power relies in part on an assessment of 

the contribution of the amino acid occurrence matrix positions.  

Our prediction strategy attempts to identify for each target sequence window a limited 

series of structural prototype candidates. The lists may contain prototypes that are close to one 

another structurally, and in such cases some could be reduced. For instance, we tested the 

effect of removing prototype candidates located less than 1.5 Å from higher-scoring ones. We 

then analyzed these lists, limiting the maximum number of allowed candidates to 5. 

Interestingly, the mean number of candidates decreased from 4.2 to 3.9, while the prediction 

rate rose slightly, from 51.2% to 51.5%, and the difference between HPM and random 

prediction from 29.3% to 31.3%. This reduction is dependent on the C  rmsd threshold used, 

and its effect must be further analyzed, especially on the compatibility between successive 

prototypes. 

Until now, few local structure prediction methods have been published. For easier and 

more relevant comparison purpose, we selected the study carried out by Yang and Wang 

(2003)
27 

that includes itself comparisons with other works. They described a local structure 

prediction method which goals to predict the backbone conformation of nine-residue sequence 

segments using four states: A, B, G and E (see the Ramachandran plot in Figure 1 of Yang 

and Wang, 2003)
27

. We thus encoded the local structure candidates proposed with our strategy 

in terms of these four conformational states (A, B, G, E), and we computed a consensus 

prediction from the multiple alignment of these candidates. The originality of our prediction 

strategy is to propose a limited series of local structure prototype candidates for a query 

sequence window, associated to a confidence index. When considering only the top scoring 

candidate (MNAC = 1) or when considering the best candidate (the closest to the true local 
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structure) among an average of 4.2 candidates per sequence window (MNAC = 5) to compute 

the consensus, the backbone torsion angle prediction accuracy ranged from 63.6% to 75.8%. 

This result is comparable to the prediction accuracy obtained by Yang and Wang (2003)
27

 

which equals 74.7% when their method is combined with PSI-PRED (otherwise this value 

decreases of approximately 7%). This result is also comparable to HMMSTR
41

 prediction 

accuracy (74.0%). With more sophisticated methods based on the use of support vector 

machines (SVMs) combined with PSI-BLAST
50

 and PSI-PRED
51

, Kuang et al. (2004)
52

 

reached a prediction accuracy of 77.3% (more details are given in supplementary data 10). 

Our method is based on logistic functions that are equivalent to perceptrons without a hidden 

layer. Improvements of our prediction results may be obtained with more sophisticated 

artificial neural networks or with SVMs. In addition, we note that our approach is specifically 

different from the others in that it makes prediction from the amino acid sequence alone (no 

sequence alignments). The evaluation of the prediction results must therefore be viewed in 

this context. 

 Yang and Wang (2003)
27

 also used a C  rmsd prediction accuracy measure similar to 

that of Bystroff and Baker (1998)
22

. It corresponds to the proportion of test residues for which 

at least one of the overlapping nine-residue segments is predicted correctly, that is, less than 

1.4 Å from the true local structure. We computed the same criteria by considering only the 

nine central residues of our eleven-residue fragments. The proportion of correctly predicted 

residues we obtained ranged from 53.5% when considering only the top-scoring candidate 

(MNAC = 1) to 72.2% when considering the best candidate among those proposed (MNAC = 

5). The rate of 62.1% of correctly predicted residues obtained by Yang and Wang (2003)
27

 is 

comprised in the range defined by our values. Then, we did the same calculations with our 

eleven-residue fragments and C  rmsd thresholds. The percentage of correctly predicted 

residues when considering only the top-scoring candidate ranged from 44.5% (C  rmsd < 1.5 
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Å) to 62.7% (C  rmsd < 2.0 Å). When considering the best candidate among those proposed, 

this percentage respectively ranged from 59.7% (C  rmsd < 1.5 Å) to 80.1% (C  rmsd < 2.0 

Å) (more details are given in supplementary data 11). These comparisons further indicate the 

prediction capacities of our method. 

Our approach could provide valuable information for proteins without structural 

homologues. Even in homology modeling, such approach would be useful, particularly in the 

regions of the target protein where the conformation may differ from the template, as in loop 

regions.
53

 Our prediction results may nonetheless be improved by use of homology-derived 

sequence information, when available. Using multiple sequence alignments has, for example, 

permitted great improvements in secondary structure predictions.
54

 Recently, Pei and Grishin 

(2004)
55

 proposed a nearest-neighbor method for local structure prediction; it combines 

evolutionary and structural information. They showed that the combination of this 

information improved the accuracy of the applications of their methodology to secondary 

structure prediction (i.e., 3 states).  

Another major point of this paper is the definition of a confidence index. The results 

obtained showed that it is a good indicator of the probability of finding an acceptable 

candidate among those proposed.  

 

Future work will focus on global structure prediction by fragment assembly. This kind 

of approach lies on the idea that proteins are constructed from a small catalog of recognizable 

parts that fit together in a limited number of ways.
56

 We will use the properties of continuity 

and overlap of successive prototypes. In addition, the long length of the prototypes is well 

suited to this objective.
26

 Possible structural pathways could be defined from the lists of 

prototype candidates, assessed by the confidence index. Because all the transitions between 

successive prototypes are not possible, combinatorial assembly will be limited.  



Local Protein Structure Prediction 

 33 

 

Acknowledgments 

 

The authors thank P. Fuchs, A.C. Camproux and D. Flatters for fruitful discussion, and 

F. Guyon and P. Tufféry for the superimposition software. The authors also thank the 

reviewers for their very useful comments. This work was supported by grants from the 

Ministère de la Recherche and from "Action Bioinformatique inter EPST" number 4B005F 

and 2003-2004 (“Outil informatique intégré en Génomique Structurale. Vers une prédiction 

de la structure tridimensionnelle d'une protéine à partir de sa séquence.”). CB has a grant from 

the Ministère de la Recherche. AdB is a researcher at the French Institute for Health and 

Medical Research (INSERM). CE and SH are Professors at the University Paris 7 - Denis-

Diderot, Paris.  

 

 

 

 

 

 

 

 

 

 

 

 

 



Local Protein Structure Prediction 

 34 

Captions 

 

Figure 1: Overview of the local prediction strategy. (a) Each cluster s of the library, s 

varying from 1 to N, is represented by an average local structure prototype Ps. (b) For each 

cluster, an amino acid relative self-information matrix of dimensions (20x21), i.e., the 20 

amino acids and a sequence window 21-residues long (labeled from -10 to +10), is computed. 

(c) For a target sequence window W, 21-residues long and of unknown structure, (d) a vector 

of relative self-information contents is derived for each of the N clusters of the library. (e) The 

resulting vectors are the inputs of the N experts, and each expert is characterized by a logistic 

function. (f) The output of each expert corresponds to the probability that the target sequence 

window is compatible with the local structure prototype of the cluster it characterizes, i.e., 
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p(W / Ps). They are analyzed by a jury that, based on a decision rule, does (when black) or 

does not (when white) propose the structural prototype of the cluster as a candidate (g). Two 

prototype candidates are proposed in the example. 

 

 

 

 

 

 

 



Local Protein Structure Prediction 

 36 

 

Figure 2: Library of 120 structural prototypes built by the Hybrid Protein Model 

(HPM). (a) The library built by HPM has a length of N =120 clusters and is characterized by a 

PB profile, that is, a series of PB probability distributions. The gray level indicates the PB 

frequencies, which vary from 0 (white) to 1 (black). A cluster is defined by L = 7 PB 

distributions. Successive clusters are overlapping and have 6 PB distributions in common. 
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Examples of some clusters are displayed: #10, #24, #30, #64 and #105. HPM is a closed 

linear neural network. Hence, cluster #120 is contiguous to cluster #1. (b) Distribution of the 

protein fragments. (c) Mean C  rmsd value of each cluster (Å). (d) Example of structural 

prototypes of the library, displayed using the VMD software.
45

 The N-cap is on the left and 

the C-cap is on the right. Each prototype is 11 C  long and is characterized by a series of 7 

PBs. For each prototype, the mean C  rmsd value of its cluster and its standard deviation are 

also stated. The prototypes displayed correspond to an extended structure (#10), a helical 

structure (#24) and three capping structures (#30, #64 and #105). Prototype #30 overlaps 

prototype #24 over 5 C .  
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Figure 3: C  rmsd values computed after optimal pairwise superimposition of the 120 

prototypes. Colors are assigned as follows: (red): C  rmsd < 1 Å; (orange): 1 Å  C  rmsd < 

1.5 Å; (yellow): 1.5 Å  C  rmsd < 2 Å; (green): 2 Å  C  rmsd < 2.5 Å; and (blue): C  

rmsd > 2.5 Å. 
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Figure 4: Analysis of the sequence – local structure relation. The sequence-structure 

relation is illustrated for two clusters: #67 and #15. (a) The representative prototype is 

displayed, and its corresponding series of 7 PBs is stated, with the mean C  rmsd value of the 

cluster and the standard deviation. (b) The relative self-information matrix of dimensions 

(20x21), noted from -10 to +10 and centred in 0, is displayed. The color assignment is based 

on the distribution of the self-information content values of all the 120 matrices: top 5% of 

values (red), next 15% (orange), lowest 5% of values (blue), next 15% (green), otherwise 

(yellow). The amino acids from bottom to top are: I, V, L, M, A, F, Y, W, C, P, G, H, S, T, N, 

Q, D, E, R, K. (c) KLd distribution. The significance threshold equals 0.02 for cluster #67, 

and 0.04 for cluster #15 (  < 0.001; see Methods section). (d) The expert logistic scoring 

function assigns a weight to each position of the relative self-information matrix. A t test 

assesses their significance. Graphic indicators of the level of significance are assigned 

according to the p-value, as follows: „***‟: 0  p < 0.001, „**‟: 0.001  p < 0.01, „*‟: 0.01  p 
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< 0.05 and „.‟: 0.05  p < 0.1.  

 

 

 

 

Figure 5: Examples of prototype candidates proposed for Escherichia coli signal 

transduction protein CheY (PDB code 3CHY). Four examples are displayed. The true local 

structure with its location in the protein is shown in red. The assigned prototype with the 

corresponding C  rmsd of local approximation is green. The selected prototype candidates 

are displayed in blue and ranked according to the probability p of their sequence-structure 

compatibility; and the C  rmsd of local approximation it provides is reported for each. 
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