Supplementary data 1: The 16 Protein Blocks (PBs)

[image: image1.wmf])

1

)(

(

)

(

e

+

=

PB

F

PB

F

R

s


From left to right and top to bottom, the 16 Protein Blocks (de Brevern et al., 2000), labelled from a to p, are displayed using DINO (Philippsen, 2003). They correspond to 5-residue fragments, defined by 8 dihedral angles (( and (). For each PB, the N-cap is on the reader's left and the C-cap on the right. They were obtained by an unsupervised classifier similar to Kohonen Maps (Kohonen, 1982, 2001) and Hidden Markov Models (Rabiner, 1989).
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Supplementary data 2: Hybrid Protein Model (HPM)
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The main principles of HPM (de Brevern and Hazout, 2001, 2003; Benros et al., 2003) are summarized in the following sections: (i) Hybrid Protein (HP) topology, (ii) HP initialization, (iii) training strategy.

(i) HP topology. The Hybrid Protein corresponds to a self-organizing neural network. Its topology is a ring of N neurons or clusters (Figure a), which is represented by a matrix of PB probability distributions of dimensions 16 x N (the structural alphabet (de Brevern et al., 2000) is composed of 16 PBs; cf. Figure b). Each site s (i.e., column, varying from 1 to N) of the matrix corresponds to the vector of the frequencies of the different PBs in site s, noted Fs(PB). A neuron centred in position s is defined by L successive probability distributions (in this study, L = 2w + 1 = 7) located in positions (s - w) to (s + w). Two consecutive neurons overlap and have (L-1) probability distributions in common. 

(ii) HP initialization. The Hybrid Protein matrix is initialized with N column vectors corresponding to the reference frequencies of the 16 PBs, that is, their frequencies as observed in the databank (noted FR(PB)), modified by adding a weak random noise : 
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The value of is randomly drawn within the range [-0.10; +0.10]. The probability sum is then readjusted to 1 at each site s. 

(iii) HPM training. The HPM training relies on the same concept of competition as the “Self-Organizing Maps” (SOM; Kohonen, 1982, 2001). As in the SOM method, the training is iterative: several cycles are necessary to stabilize the Hybrid Protein matrix, that is, obtain the PB probability distributions. A cycle is carried out when the entire fragment training databank is presented to the Hybrid Protein. Moreover, since the different neurons overlap, the modification of the PB distributions associated with the winner (that is, the neuron selected by competition) influences the neurons located in its neighbourhood. Thus, information is implicitly diffused.

The learning of a given encoded protein fragment F: {PBx} (x varying from –w to +w) is a two-step procedure, with an identification step and a local enrichment step. For each fragment F taken randomly from the databank, the identification step consists of searching for the most probable neuron in the HPM library (Figure c). For this purpose, a score corresponding to a logarithm of likelihood ratio is computed at each site s (s varying from 1 to N) along the Hybrid Protein matrix, as follows: 
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PBx corresponds to the protein block located in position x in fragment F. Fs+x(PBx) is the frequency of PBx in position (s + x) in the HP matrix. FR(PBx) is the observed frequency of PBx in the databank. This score measures the compatibility of fragment F with a given neuron centred in position s and represented by L successive PB probability distributions. Fragment F is assigned to the winner, that is, the neuron associated with the maximum score: Scmax = max[Sc(s)]. It is centred in position sopt of the HP matrix. In the local enrichment step (Figure d), the L PB probability distributions of the winner are slightly modified to increase its likeness to the protein fragment F presented. This procedure is applied to HP matrix sites from (sopt - w) to (sopt + w). For the protein block PBx observed in position x in the protein fragment F and located at position (sopt + x) in the HP matrix, we increase its frequency:
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and decrease the frequencies of the other 15 PBs: 
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These equations allow us to keep the frequency values within the range [0; 1] and the sum per site equal to 1. As in the SOM method, the training parameter  decreases during the training according to the equation:  = 0/(1 + t/T), where t denotes the number of protein fragments already presented to the Hybrid Protein and T the total number of fragments in the training databank. The initial training parameter 0 is set to 0.2 in this study.
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Supplementary data 3: Distribution of the C rmsd of all the protein fragments of each cluster superimposed with their representative local structure prototype (in red), and distribution of the C rmsd of pairs of unrelated 11-residue protein fragments selected randomly from the databank (in black).
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The black histogram shows the distribution of C rmsd computed with 100 000 pairs of 11-residue protein fragments. A pair of protein fragments was randomly drawn from the databank and the C rmsd was calculated if these fragments encoded into series of 7 PBs differed by more than 5 PBs. This distribution has a mean of 4.5 Å (standard deviation, sd = 1.1 Å). The p-value for a random match with C rmsd < 2.0 Å and with C rmsd < 2.5 Å is respectively 10-3 and 10-2. These p-values could be even smaller if the fragments compared were completely different. Yang and Wang (2003), for instance, compared nine-residue fragments from all- proteins with nine-residue fragments from all- proteins and obtained a p-value for a random match with rmsd < 2.4 Å equal to 10-2 for shorter fragments. The red histogram shows that the 120 prototypes of the library ensure a good 3D local approximation with a mean accuracy of 1.61 Å C rmsd (sd = 0.77 Å). 
Yang AS, Wang L. Local structure prediction with local structure-based sequence profiles. Bioinformatics 2003;19:1267-74.

Supplementary data 4: Mean C rmsd value of the 120 clusters of the library
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The C rmsd values are obtained by superimposing all protein fragments in a cluster with their representative prototype. The fragments are 11 C long.

Supplementary data 5: Discriminating power of cluster #67’s expert.
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Distribution of the probabilities computed for protein fragments (a) that do not belong to cluster #67 and (b) that belong to cluster #67. The probability value pRmin, which equals 0.53, is associated with the minimal error risk Rmin, which corresponds to the minimal average fraction of false-positive (FP0.53) and false-negative (FN0.53) fragments. It equals 20%. In the prediction strategy, the optimal probability threshold for sequence-structure compatibility is set at p0 = 0.8, that is, well above pRmin. This stringent threshold has the advantage of ensuring a reduced proportion of false positives (FP0.8 equals about 5%). 

Supplementary data 6: Definition of four categories of prototypes
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We defined four categories of prototypes. They were obtained by hierarchical clustering of the 120 prototypes of the library, from the C rmsd values obtained after we optimally superimposed them pairwise. Figure (a) shows the tree obtained by hierarchical clustering of the prototypes (package R; Ihaka and Gentlemen, 1996). We analyzed the different groups of prototypes obtained by cutting the tree at the level displayed in red. Four categories of prototypes are considered: helical structures (H), core of extended structures (E), edges of extended structures and short extended structures (Ed, grouping Ed1 and Ed2), and connecting structures (C). The table in (b) reports the number of prototypes for each category and identifies them. Figure (c) shows the location in the Hybrid Protein Model (HPM) of the prototypes included in the different categories: (H) in blue, (E) in red, (Ed1) in brown, (Ed2) in orange, and (C) in yellow.

Ihaka R, Gentleman R. R: a language for data analysis and graphics. J Comp Graph Stat 1996;5:299-314.

Supplementary data 7: Prediction rates per prototype
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This table reports for each prototype: (i) its category, i.e., helical structures (H), core of extended structures (E), edges of extended structures and short extended structures (Ed), or connecting structures (C), and (ii) the individual prediction rates at thresholds of 1.5 Å, 2 Å and 2.5 Å C rmsd.

Supplementary data 8: Prediction rate per prototype at threshold 2.5 Å function of the mean C rmsd value of the clusters. 
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With the geometric evaluation, the prediction rate of a local structure prototype seems related to its cluster mean C rmsd value, that is, to how well the prototype approximates the local structures belonging to its cluster. This point can be explained in part by the fact that the prototypes corresponding to repetitive structures ensure the best local approximations (e.g. those located in the helical region [#23 - #27] of the Hybrid Protein). Their clusters are the most heavily populated, and a structural redundancy is observed in the library mainly for these prototypes.
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Supplementary data 9: Distribution of the protein fragments belonging to the four categories of prototypes in the six confidence levels of the prediction
Supplementary data 10: Comparison of the backbone torsion angle prediction accuracies of the HPM+experts method with other published methods.

For comparison purposes, we encoded the local structure candidates proposed with our method (HPM+experts) into the four conformational states: A, B, G, E (see Figure 1 of Yang and Yang, 2003) and computed a backbone torsion angle consensus prediction, either with the first candidate proposed (First rank, MNAC = 1) or with the candidate the closest to the true local structure among those proposed (Best candidate, MNAC = 5). 

The LSBSP1+consensus results (Yang and Wang, 2003), the HMMSTR results (Bystroff et al., 2000) and the SVM results (Kuang et al., 2004) are all reproduced from Table 2 of Kuang et al. (2004). 

It must be noted that the comparisons are not straightforward, notably due to the use of different test sets. Moreover, it must be emphasized that the HPM+experts method makes predictions from a single sequence without use of information from homologous proteins (profiles) and without taking advantage of the high prediction rates of secondary structure prediction methods such as PSI-PRED (Jones, 1999).
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Supplementary data 11: Proportion of correctly predicted residues.

1) Nine-residue fragments
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The rmsd prediction accuracy measure corresponds to the proportion of test residues for which at least one of the overlapping nine-residue segments is predicted correctly, that is less than 1.4 Å from the true local structure (% correct; Yang and Wang, 2003; Bystroff and Baker, 1998). We computed this criterion by considering only the nine central residues of our eleven-residue fragments and compared our results with those of Yang and Wang (2003).
2) Eleven-residue fragments
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For the different C rmsd thresholds (1.5 Å, 2 Å and 2.5 Å), the table reports the proportion of correctly predicted eleven-residue fragments (Prediction rate) and the corresponding proportion of correctly predicted residues (% correct), when considering either the top scoring candidate or the best candidate among those proposed by our method.
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