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Abstract 

 

The description of protein 3D structures can be performed through a library of 3D fragments, 

named a structural alphabet. Our structural alphabet is composed of 16 small protein 

fragments of 5 C  in length, called Protein Blocks (PBs). It allows an efficient approximation 

of the 3D protein structures and a correct prediction of the local structure. The 72 most 

frequent series of 5 consecutive PBs, called Structural Words (SWs) are able to cover more 

than 90% of the 3D structures. PBs are highly conditioned by the presence of a limited 

number of transitions between them. In this study, we propose a new method called “pinning 

strategy” that used this specific feature to predict long protein fragments. Its goal is to define 

highly probable successions of PBs. It starts from the most probable SW and is then extended 

with overlapping SWs. Starting from an initial prediction rate of 34.4%, the use of the SWs 

instead of the PBs allows a gain of 4.5%. The pinning strategy simply applied to the SWs 

increases the prediction accuracy to 39.9%. In a second step, the sequence – structure 

relationship is optimized, the prediction accuracy reaches 43.6%. 

 

 

Keywords (3 to 6): ab initio, local protein structures, Bayesian prediction, structural alphabet. 
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1. Introduction 

 

Until recently, the folded state of protein was classically described through the arrangement of 

secondary structures (2D): -helix (Pauling and Corey 1951a), and -strand (Pauling and 

Corey 1951b) and the non-periodic coil (non  and non- , (Eisenberg 2003). The simplicity 

of the description facilitates classification (Murzin et al. 1995; Orengo et al. 1997) and 

visualization (Sayle and Milner-White 1995; Humphrey et al. 1996; Koradi et al. 1996). 

Likewise, the sequence-structure relationship is easily tractable and generally strong enough 

for allowing 2D predictions with a high performance rate. For instance, prediction in three 

states using both neural networks and homology reaches now an accuracy rate close to 80% 

(Jones 1999; Petersen et al. 2000; Pollastri et al. 2002; Pollastri and McLysaght 2005). Lastly, 

comparison of predicted pattern of secondary structures with 2D pattern observed in known 

structures provides interesting tools for finding low-homology related proteins and extracting 

interesting functional features (Girod et al. 1999; Geourjon et al. 2001; Errami et al. 2003). 

However, different limitations of such a description remain. For instance, depending on the 

assignment algorithms used, discrepancy exists about the extent of secondary structures and 

more precisely about the location of the Ncap or Ccap of the periodic regions (Colloc'h et al. 

1993; Cuff and Barton 1999; Fourrier et al. 2004; Martin et al. 2005). Moreover and more 

importantly, 50% of the protein structures are in the coil state, a state not defined per se. 

Some attempts were performed to overcome this simplified classification and to characterize 

more precisely the coil state (Némethy and Printz 1972; Richardson et al. 1978; Milner-White 

1990; Sibanda and Thornton 1991; Ring et al. 1992; Chan et al. 1993; Rohl and Doig 1996; 

Wintjens et al. 1996; Oliva et al. 1997; Wojcik et al. 1999; Espadaler et al. 2004). 

From few years, due to the large increasing of 3D atomic data available, a new view of 3D 

protein structures emerged and a more complete and accurate description of the 3D protein 
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backbone was reached. In this context, different methods, casting off the need for defining 

repetitive structures, have been developed and proved their efficiencies (Unger et al. 1989; 

Prestrelski et al. 1992; Unger and Sussman 1993; Schuchhardt et al. 1996; Fetrow et al. 1997; 

Camproux et al. 1999b; Hunter and Subramaniam 2003a; Camproux et al. 2004; Tendulkar et 

al. 2004; Sander et al. 2006). The concept of structural alphabet, namely, a set of average 

protein fragments able to approximate locally the protein backbone with efficiency, thus 

appeared and became a very attractive and powerful description. Sequence-structure 

relationship can be extracted from the set of prototypes, allowing 3D-structure prediction 

from sequence (Bystroff and Baker 1998; Camproux et al. 1999a; de Brevern et al. 2000; 

Camproux et al. 2001; Hunter and Subramaniam 2003b; Karchin 2003; Etchebest et al. 2005). 

For a review about the structural alphabets, see (de Brevern et al. 2001). Recently, Pei and 

Grishin have emphasized the interest of blocks for predicting local protein structures (Pei and 

Grishin 2004). In the same way, the results of Tsai and coworkers (Tsai et al. 2004) and Baker 

group (Chivian et al. 2005) show clearly the interest of using local prototypes to design 

protein folds. 

In a previous work (de Brevern et al. 2000), we have defined a 16-states structural alphabet by 

using an unsupervised classifier close to the Self-Organizing Maps (Kohonen 1982; 2001) and 

Hidden Markov Model (Rabiner 1989). Each state, called Protein Block (PB) is an average 

3D-conformation of 5 C  in length, which approximates locally the 3D protein backbone with 

an average root mean square deviation (RMSd) of 0.41 Å (de Brevern 2005). They could be 

used with a good efficiency to compare protein structures that are encoded as sequences of 

PBs (Tyagi et al. 2006). Karchin and co-workers have compared the PBs’ features with 8 

different structural alphabets. Their results have shown that PBs alphabet is the most 

informative one (Karchin et al. 2003). In addition, a study has pointed out a specific 

dependence between the PBs and the physico-chemical properties of amino acids (de Brevern 
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and Hazout 2000). A Bayesian probabilistic strategy gave a prediction rate equal to 34.4%; 

this rate was improved by an optimization of the sequence – structure relationship to 40.7% 

(de Brevern et al. 2000). Moreover, PB series of more than 10 C  length clustered by a fuzzy 

approach have shown a good structural approximation (Benros et al. 2003; de Brevern and 

Hazout 2003). These PBs can be used in a structural homology search (de Brevern and 

Hazout 2001) and prediction (de Brevern et al. 2005; Benros et al. 2006). However, in these 

studies (de Brevern et al. 2000; de Brevern et al. 2004), even if the PBs are overlapping, some 

geometrical incompatibility between the predicted PBs may occur because the prediction is 

performed independently for each PBs. Aiming to overcome such shortcomings, we 

concentrated on longer fragments still based on PBs description. Indeed, similarly to Fetrow 

and co-workers (Fetrow et al. 1997), we observed some over-represented successions of 

blocks. Focusing on 5-PBs series, we extracted, from an encoded 3D-structure databank (de 

Brevern et al. 2002), the 72 most frequent series called Structural Words (or SWs). From the 

sequence–structure relationship observed in the SWs, we developed a strategy based on 

Bayes’ rule, to predict the 3D-structure in terms of PBs from the sequence. Prediction rate 

reached 38%, a significant improvement compared to the previous study. Coupled with the 

prediction rate, we defined a confidence index of the prediction, derived from Shannon 

entropy (Shannon 1948). This index pointed out striking differences of the prediction rate 

along the sequence, i.e. some regions are easily predictable while others are not. Related to 

this observation, we propose, in the present work, a novel prediction method called "pinning 

strategy". This method rests on the overlapping features of SWs and aims i) at first selecting 

the most predictable regions (“pinning”) in terms of SWs and then ii) at extending the pinned 

regions on both ends until a predictability limit is reached. The principle therefore consists in 

assembling predicted SWs along a relevant pathway. We also test the potential interest of 

introducing homology for improving the prediction. Finally, we propose an index to estimate 
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the relevance of the prediction. A large set of proteins is tested and improved prediction 

results are obtained in most cases. We present as an illustration the results obtained for the 

signal transduction protein of E. coli and four homologous proteins.  

 

2. Material and Methods 

2.1 Protein Blocks and Structural Words: 

To facilitate further reading of the manuscript, we briefly summarize the main points 

about the protein blocks and the structural words.  

Protein Blocks (PBs) correspond to a set of 16 local prototypes of 5 residues in length 

(de Brevern et al. 2000). They are based on ( , ) dihedral angle description and are labeled 

from a to p (see Figure 1 and Figure 1 of (Fourrier et al. 2004)). They were obtained by an 

unsupervised classifier similar to Self-Organizing Maps (Kohonen 1982; 2001) and hidden 

Markov models (Rabiner 1989). The PBs set, denoted with letters from a to p, constitutes a 

structural alphabet (de Brevern et al. 2001). This structural alphabet allows a correct 

approximation of local protein 3D structures with a root mean square deviation (rmsd) equals 

to 0.41 Å (de Brevern 2005). For more details, see www.ebgm.jussieu.fr/~debrevern. 

Structural words (SWs (de Brevern et al. 2002)) are defined as the most frequent series of five 

PBs with an occurrence larger than 100 (cf. Figure 2d to 2e, see also sup data 1). They were 

obtained from the analysis of a non-redundant encoded databank composed of 1,403 proteins 

and 320,005 residues (see (de Brevern et al. 2002) and (Etchebest et al. 2005), for details and 

http://www.ebgm.jussieu.fr/~debrevern/SWs).  

The analysis gives 72 most frequent SWs. They cover 92% of the residues of the non-

redundant databank. For each SW, the 3D structural approximation has been analyzed. As the 

transitions between successive PBs are highly specific, most of the SWs are overlapping. So 

we can build long continuous PB chains (see Figure 8 of (de Brevern et al. 2002)). The major 

http://www.ebgm.jussieu.fr/~debrevern
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features of the SWs may be summarized as: (i) their frequency varies between 17.3% and 

0.18%, (ii) PB m ( ~ core of -helix) and PB d (~core of -strand) are involved in many SWs 

(19 and 44 respectively), (iii) only one SW has no prefix and suffix SW, and 6 have only one 

prefix or one suffix SW, and (iv) the structural meaning of SWs is relevant with an average 

rmsd of 0.70 Å for 9 C  length (de Brevern et al. 2002). 

The analysis of the sequences in the databank associated to the given SW (cf. Figure 

2f) permitted to deduce a sequence-structure relationship for each SW. It provided an amino 

acid occurrence matrix for each SW and for each position along the SW (cf. Figure 2g). This 

matrix is the basis of the scoring schema, which is further used, in the pinning strategy (see 

below).  

 

2.3 Principle of prediction by a "pinning strategy" 

Pinning strategy consists in searching for the "Preferential Succession of Overlapping 

structural Words" (PSOWs), namely, in chaining the predicted SWs in adequacy with the 

protein sequence studied (see Figure 3 and caption). The pinning strategy may be decomposed 

into three phases: (i) calculation of an adequacy score matrix for all the fragments of a given 

length M composing the protein sequence (ii) selection of the seeds, i.e. the SWs to be 

initially pinned, along the protein sequence, and, (iii) extension of the seeds into PSOWs. 

 

First step: Assessing of the sequence-SW adequacy by a score matrix. Similarly to the ratio Rk 

used for the PBs prediction (see equation S1 in supplementary data 1), we define a sequence-

SW adequacy score Sp involving the amino acid properties of the structural word SWp (p 

varying to 1 to N, with N =72 in our study) by: 

                                             

Sp

P(Xs SWp)

P(Xs)

P(SWp Xs)

P(SWp)
                                    (1) 
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The ratio Sp measures the extension of information provided by the amino acid chain Xs in the 

prediction of the structural word SWp. The term P(Xs | SWp) is obtained from the occurrences 

of the amino acids in a given position of the sequence window Xs encompassing the structural 

word SWp. We assume that the sequence window Xs (as-l, …, as,…, as+l) is composed of 2l+1 

independent residues. Even if slightly crude, this assumption is necessary because an 

appropriate learning would require a dataset which is not yet available. Indeed, the database 

becomes rapidly sparse even at the dipeptide level. 

Therefore, we have: 

              SWaPSWaPSWaPSWXP plspsplspS
......

            (2) 

 

Each relative occurrence frequency P(ai | SWp)/ P(ai) of a given amino acid a, located in the 

ith position of the sequence window is computed as the ratio between the frequency of ai 

observed in the SWp and the frequency of ai observed in the training databank. 

As a result, a score matrix F(s, p) is composed of the adequacy sequence-SW scores Sp 

computed for every structural word SWp centered in the position s of the sequence. 

 

2nd Step: Selection of the seeds with a score diversity index. The second step of the pinning 

strategy consists in locating along the studied protein the SWs (namely the “seeds”) from 

which we build the PSOWs. These positions s along the sequence are selected thank to a 

diversity index established from the score matrix. This index, we previously introduced (de 

Brevern et al. 2000), is based on the information theory and estimates the predictability power 

of the sequence. It is defined as the exponential of the Shannon entropy H(s) (Shannon 1948) 

of the probabilities F*(s, p) for a given position s with 

                                                         

F* (s, p)
F(s, p)

F(s,q)

q 1

N

                                                         (3) 
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and H(s) defined as  

                                                

H(s) F * (s, p)lnF * (s, p)

p 1

N

                                              (4) 

                                                       
Neq(s) exp H(s)

                                                      (5) 

This index denoted Neq, for "equivalent number of structural words" varies between 1 and N, 

with N=number of structural words. For Neq = 1, only one SW seems to be optimally adequate 

for the studied sequence window. For Neq = N, the whole SWs are evenly distributed with 

respect to the adequacy scores; in this case, no SW prediction can be performed. 

Consequently, a low SWp -value indicates a high information content of the sequence relative 

to the local protein structure, hence a high predictability level.  

Therefore, the second step of the pinning strategy consists in defining a list where the 

positions, along the sequence, are ranked in ascending order according to the Neq values. The 

first selected position s* corresponds to argmin[Neq(s)]. In this location, the top-scoring 

structural word (noted SW*) is then considered, defining the first seed. 

. Its associated index and adequacy score are p* = argmax[F(s*, p)] and Fmax = F(s*,p*) 

respectively. For example, in Figure 3e, the seed is the SW mnopa corresponding to a C-cap 

-helix (see supplementary 2 for another example). 

 

3rd step: Extension of the seeds. The location s* is then extended into a series of overlapping 

SWs in maximum adequacy with the sequence and with the selected word SW*. We define 

the terms of prefix words and suffix words. A structural word SWo (respectively SWq) is a 

prefix word (resp. a suffix word) of another word SWp when the 4 last PBs of SWo (resp. the 4 

first PBs of SWq) are identical to the 4 first PBs of SWp (respectively the 4 last PBs). Prefix 

(resp. suffix) of SWp* is defined as i) the SW with the maximum adequacy score for the 

selected position o (resp. q) and if ii) this score is higher than a given user-defined threshold 
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F0. For instance in Figure 3f, the optimal suffix word is nopac. The selection of the optimal 

prefix word of SWp * is carried out similarly. For position s*-1, in Figure 3g, the prefix SW 

mmnop is found. The extension is performed at the extremities of PSOWs while the scores of 

the suffix and prefix words are higher than a user-defined threshold F0.  

When no further extension is possible from a given seed, a new seed is selected from the list 

(step 2). If the chosen seed overlaps some suffix or prefix picked in the extension process, the 

next seed in the list is then considered. The process is iterated until a new seed with no 

overlapping is obtained. 

 

The pinning processing is finally stopped when no new seed can be introduced or when the 

Neq -value for any seed exceeds a given threshold Neq0. Thus, the “pinning strategy” only 

depends on two threshold parameters: Neq0 for selecting the seeds and, F0 for limiting the 

extension. With this prediction strategy, we reject a fortiori the regions of the protein 

sequence where the sequence-SW adequacy is too low. We have fixed Neq0 to a high value 

(e.g. 15) to provide an appropriate number of seeds.  

To assess the quality of the strategy, we define two measures. The first one compares the 

number of predicted PBs with the true total number of PBs, i.e. the sequence length minus 4. 

This value will be called “the covering ratio” in the following. If all the PBs of the sequence 

were predicted, the covering value would be 100%. The second measure is the prediction rate 

itself Q16, defined as the ratio of PBs, correctly predicted, over the total PBs predicted for the 

protein (those defining the “covering ratio”). 

 

2.4. Improved prediction by using the sequence families 

In our previous works, we introduced a procedure able to improve strongly the 

prediction rate (de Brevern et al. 2000; Etchebest et al. 2005). This procedure lies on the 

observation that many different sequences may be associated to a given local fold (“n 



Structure prediction by a “Pinning Strategy” 

 11  

sequences for one fold”). Indeed, the learning process yielding to the definition of PBs (and 

consequently to SWs) is based on pure geometric considerations, the sequence-structure 

relationship being deduced a posteriori. The matrix P(Xs | SWs), expressing the sequence-

structure relationship along the window s, results in fact, from the superposition of n different 

sequences folding in the same state. The sequence family (SF) concept thus aims at detecting 

and grouping the similar groups of sequences in the set of sequences folding in a given state, 

and accordingly defining new specific sequence-structure relationships for the given local 

fold. 

In our previous approach, the procedure was based on the proximity of a sequence window to 

a profile, i.e. the occurrence frequencies of amino acids in the different positions of the 

window. The new approach is now based on the proximity of a sequence window to a 

reference sequence window specific to each sequence family. It is similar to the conventional 

clustering method, k-means (Hartigan and Wong 1979). 

The process starts with g groups represented by a sequence chosen at random. Sequence 

windows are shared among the g groups using a distance based on a similarity score. This 

similarity score is computed using the BLOSUM62 matrix (Henikoff and Henikoff 1992). 

Then, inside each group, the sequence whose the sum of distances with respect to the other 

fragments is minimal, is selected (the barycentre). The whole process is iterated until no 

modification of the g reference sequence windows is observed. Finally, the whole sequence 

windows are distributed into the groups, then for each SW, the g occurrence matrices are 

defined. The number g of sequence families depends on the SW frequency in the training 

databank. In practice, the most frequent SWs are split into 2 to 15 clusters.  

In the building of the score matrix, only the maximal score F(s, p) upon all the sequence 

families of the same SWp is conserved. In addition, to assess the quality of the prediction, we 

perform a cross-validation consisting in splitting the set of proteins into five subsets, 4 for the 
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training, and the last subset for the validation. So the learning subset ranges from 572 to 577 

proteins and the validation subset between 140 and 145 proteins. For each subset, the SFs are 

re-defined. Depending on the cross validation step, the total number of occurrence matrices 

associated with the 72 SWs may vary between 124 and 129. Twenty-four SWs are associated 

with sequence families: SW mmmmm with 15 sequence families, SW ddddd with 8, 3 SWs 

with 4, 3 SWs with 3, and 15 SWs with 2 SFs. 

 

2.5 Definition of an index for assessing the prediction accuracy: 

The amino acid distribution is the basis of any prediction method. Most strategies 

developed for predicting 3D structure from sequence are confronted to a dilemma: i) the 

necessity to trap the main sequence determinants of the structure; that supposes a large set of 

data of being available; and ii) to predict protein sequences with, in fact, many singularities; 

that means sequences with features that may be far from the average properties of the learning 

dataset. In many cases, the prediction rates obtained are inhomogeneous and depend on the 

sequence examined. Here we propose a relationship able to estimate the expected prediction 

rate using few parameters. The method is based on linear multiple regression using the 

following parameters; 

(i) f
R
(i)k, the relative variation of frequencies equals to f(i)k/f(i) of amino acids with  

f(i)k = f(i)k - f(i)) where f(i)k and f(i) denote respectively the frequency of the amino acid i in 

the protein k and in the database.  

(ii) PNeq
5
, the relative proportion of Neq positions with Neq<5.0 computed as: 

PNeq
5
= fk(Neq<5)/<f(Neq<5)>, 

with fk(Neq<5)= fk(Neq<5) - <f(Neq<5)> 

fk(Neq <5) is the proportion of Neq smaller than 5 in the protein k and <f(Neq<5)> mean 

proportion of Neq smaller than 5, 10% in our study.  
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(iii) F50, the relative proportion of positions associated to a score > 50. 

F50 = fk(Fmax)/<Fmax>, 

with  Fmax, the maximal score (see above),  

fk(Fmax)=fk(Fmax) - <f(Fmax)> with fk(Fmax) proportion of Fmax larger than 50 in the protein k 

and <f(Fmax)> mean proportion of Fmax larger than 50, 31% in our study.  

The multiple linear regression performed gives a significant multiple correlation (R
2
 = 0.485, 

p-value < 1.10
-9

).  

The final equation obtained is: 

QPSe = 43.50 – 3.56 I – 3.61 V – 4.26 L – 0.92 M - 0.23 A – 0 .41 F – 3.97 Y - 1.71 W – 1.45 

C – 4.78 P – 10.07 G – 0.27 H – 5.02 S – 4.85 T – 1.06 N – 1.45 Q – 6.59 D - 4.02 E – 1.14 R 

– 0.72 K + 6.73 PNeq
5
+ 10.12 F50 

Thus, for a given sequence, we can compute an expected prediction rate using the amount of 

each amino acid in the sequence, and the values F50 and PNeq
5
, also related to the 

characteristics of the sequence.  

 

3. Results 

3.1. Efficiency of the structure prediction by a pinning strategy 

The results obtained with the pinning strategy without and with the sequence family 

approaches are given in Table 1. As a reference, we compute the prediction in terms of PBs 

and in terms of SWs applying the Bayes’rule, similarly to our previous works (de Brevern et 

al. 2000; de Brevern et al. 2002; Etchebest et al. 2005). The prediction rate Q16 of the 

Bayesian approach with the PBs is 34.4%. This value is unchanged compared to the initial 

work, while the size of the databank is doubled (from 86,628 to 180,854 residues). When 

SWs are considered, Q16 increases to 38.9%. The pinning strategy with SWs yields an 
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improvement of 1% for the Q16 value, compared to the SW Bayesian approach. These values 

are obtained with Neq and F0 optimized parameters (see Methods). The Neq parameter that 

controls the choice of the seed is fixed to 15, while, F0 devoted to the extension is fixed to 4 

(see Discussion section). Finally, when sequence families are considered (see supplementary 

data 3 for some details), the pinning strategy efficiency reaches 43.6% on average. A cross-

validation procedure used for assessing the reliability of the sequence families shows a 

significant improvement, in any cases.  Indeed, depending on the considered databank subset, 

the Q16 values range between 42.7% and 45.3% for a covering range of [81.4% - 86.3%]. 

Thus, the pinning strategy with the SFs has Q16 values higher of 9.1% and 4.5% compared to 

the prediction of the PBs and SWs respectively. Interestingly, these values are associated to 

an average covering range of 85%, i.e. only 15% of the residues are not predicted. If we 

compare these values with the distribution of periodic structures m and d (30% and 19 % 

respectively), we clearly show that the prediction is not biased towards repetitive structures.  

In addition, the comparison of prediction rates between the Bayesian prediction with SWs and 

prediction rate of the pinning strategy with the SFs (see Figure 4) shows that 64.3% of the 

studied proteins get a positive gain. We observe that the Q16 improvement is not correlated to 

the initial prediction rate, and not related to the size of the protein or the protein structural 

class (all- , all- , / , others). 

 

3.4. Examples of a structure prediction by the pinning strategy  

Among the 717 proteins tested, the signal transduction protein of Escherichia coli (PDB label: 

3chy, see supplementary data 4) of 128 amino acids is representative of a large number of 

proteins. We present here the prediction using the pinning strategy and illustrate the role of 

different parameters. Moreover, we explore the putative contribution of homologous 

sequences on the structure prediction.  
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3.4a. Prediction: Figure 5 shows the predictions of the protein structure from the sequence by 

the pinning strategy. Figure 5a gives the sequence, the classical secondary structure 

description, the coding in terms of PBs, the prediction of PBs with our previous approach 

(LocPred, (de Brevern et al. 2004)) and the Neq of pinning strategy. Figure 5b shows the 

results of pinning approach extending from the lowest Neq, step-by-step with the seeds and the 

structural pathways. In parallel, are given the resulting covering ratio and Q16 value.  

When the covering ratio increases until 87.1% (106 residues) (Fig 5b), the prediction rate Q16 

progressively decreases to reach a plateau close to 68.8%, namely 73 PBs among the 106 

predicted PBs. The first seed is centered in position 27 with the SW mnopa [positions 25 to 

29]. An extension of 29 PBs kbc2d4fklm12nopabd is obtained with 24 correctly predicted PBs 

[positions 3 to 31]. Extension is mainly located towards the prefix ends. Compared to the true 

assignment (Fig 5a), the prediction is locally false since the triplet fkl [positions 15 to 17] is 

shifted to one position backward. Indeed, a PB l is predicted at position 14 instead of position 

15. This shift is already present when the original procedure (Fig 5a, LocPred) based on 

Bayes’ rule is considered.  The second seed is centered in position 120 with the SW mmmmm 

[positions 118 to 122]. It leads to a 21-PBs chain d2fklm14no with 15 correctly predicted PBs. 

In this last extension, the repetitive m region is too long compared to the true assignment. It is 

important to notice that this second seed is correctly predicted compared to the Bayes’ 

prediction with PBs, which gives the PB series mnopa. Conversely, the extension to the left is 

wrongly predicted whereas the PB prediction predicts correctly the triplet fkl at positions 111 

to 113. 

Generally, we observe that the seeds selected in the first ranks give correct extended chains. 

PBs m are in most cases well positioned. Some regions are not predicted, e.g. positions 32 to 

36 and the fourth -strand (absent in the prediction due to high Neq values) [positions 84 to 

88], or wrongly defined, e.g. the N-cap of the fifth -helix [position 114] (the -helices are 
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generally predicted longer). 

In Figure 5c, we report the impact of the extension threshold F0 on the prediction results with 

F0 values equal to 8, 12, 20 and 24. The prediction rate varies from 66.1% to 75.2% for a 

covering ratio extending from 87.9% to 93.6% (corresponding to 7 additional PBs). Overall, 

we observe a large agreement between the predictions. However, two regions are particularly 

variable. The first one extending from residues 32 to 35 (PBs cddf, an extended structure) 

corresponds to a region with high Neq-values. Thus, in this region, different SWs are equally 

compatible with the sequence. This may be due to the presence of 3 Glutamic acids in 

positions 33, 34 and 36, an occurrence probably sufficiently rare for explaining the weakness 

of the sequence-structure relationship. The second region located between residues 85 to 88 

(PBs dfbd) corresponds to a zone where the results are strongly dependent on the parameters 

F0 chosen. 

This example is quite satisfying: the sequence is enough informative for predicting a large 

part of the 3D structure with a convenient reliability. Thus, the prediction rate is around 70% 

for a covering ratio close to 85%. This result corresponds to a strong improvement compared 

to the results obtained using the Bayes’ rule that gives a prediction rate of 53% for the same 

protein.  

 

3.4b. Analysis of homologous proteins of 3chy:  

It is generally observed that homology strongly improves the success rate when used in the 

prediction paradigm. In the present case, we have tested the putative gain on the prediction 

when homologous sequences are considered. We present here the results obtained for the 

3chy protein that is representative of a large number of proteins. In this case, the pinning 

strategy was applied to four homologous proteins. The homologous sequences were selected 

from SwissProt database (Bairoch et al. 2004) (codes: p94342, q9kd5, q87718, q9kkk8) using 
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BLAST (Altschul et al. 1990), and aligned with CLUSTALW (Thompson et al. 1994). The 

identity between 3chy and p94342, q9kd5, q87718, q9kkk8 equals respectively to 75.8%, 

65.9%, 41.7% and 36.6%. The sequences will be noted 3chy
76

, 3chy
66

, 3chy
42

 and 3chy
37

 in 

the following.  

In Figure 6, are given the Neq values along the sequence for the 3chy and its 4 homologous 

sequences as well as the corresponding predictions in terms of PBs obtained with the pinning 

strategy.  

The following remarks may be pointed out: (i) The Neq-variations are very similar between the 

studied protein and its homologous ones, apart the last one 3chy
37

. In the regions 

corresponding to PBs m, the sequence information level is high (small Neq value). 

Interestingly, some regions are more informative (low Neq values) in the homologous 

sequences than in the true 3chy, for instance, the N-ter region of 3chy
66

and 3 chy
42

, or the 

region located in the positions 36-53 for 3chy
37 

 . (ii) As expected, 3chy
76 

give close results to 

3chy. (iii) The covering ratio is similar in the four cases with a value close to 88%. (iv) A 

large similarity in the prediction is observed apart the region 70-89 where the predictions are 

ambiguous. A very interesting result concerns the PBs d in the region 80-89, missed when the 

sequence of 3chy itself is examined, but may be recovered when considering three 

homologous proteins. We observe that among the five helical regions, three are correctly 

predicted [positions 16 to 25, 94 to 99 and 113 to 127] and are associated to low Neq values. 

The two last ones show more confusing results: (i) positions 39 to 45 correspond to an 

extended structure in 3chy
66

 with high Neq values (low predictability), and (ii) for positions 66 

to 72, the length of the helices largely differ. Nonetheless, it is possible to find correct 

consensus prediction with a simple majority rule. For instance, a helical structure is found in 

positions 39 to 45 for four sequences among the five studied. We can make the same remarks 

for the extended structures dddd in positions 82 to 85 that are found for 3chy
76

, 3chy
42

 and 
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3chy
37

 but absent for 3chy.  

In conclusion, the analysis of the homologous sequences seems to bring additional 

information for the prediction of the structure of the studied protein. The use of different 

homologous sequences permits to point out sequence regions that appear more informative for 

predicting the 3D structure. This encouraging result must however be consolidated by a more 

detailed study. 

 

3.5. Prediction reliability 

The different prediction methods based on sequence information (ab initio methods) are 

frequently faced to a main difficulty: the prediction accuracy may depend on the protein 

examined. Here we propose a new approach aiming at estimating the relevance and the 

confidence of the prediction of the pinning approach. This method combines through a 

multiple linear regression a priori and a posteriori parameters: the amino acid composition of 

the protein (noted f
R
(i)k), the proportion of positions where the Neq is less than a threshold 

fixed at 5.0 (noted PNeq
5
) and the proportion of positions associated to a score larger than a 

threshold fixed at 50 (noted F50). A significant multiple correlation, R
2
 = 0.485, (p-value < 

1.10
-9

) is obtained. The equation of the regression is given in the caption of Figure 7. From 

this equation, an expected prediction rate was deduced, for each sequence in the databank. 

The value was compared to the observed prediction rate for the same sequence. For the whole 

set of proteins tested, the results show a strong linear correlation between the two measures. 

Consequently, we get a priori a confidence index of prediction reliability when the true 3D 

structure of the studied protein is unknown. We also performed a sensitivity analysis of this 

confidence index to the parameters used and we showed that (see supplementary data 5) most 

of information relies on the two first parameters (PNeq
5
 and F50). 
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4. Discussion  

In the present section, we discuss the impact of different parameters in the prediction 

efficiency of protein structure by the pinning strategy, such as the definition of a SW library, 

the number of sequence families, and, the values of the threshold parameters. 

 

4.1. Definition of a SW library 

First, the length of SWs (five PBs) was chosen to ensure both a structural meaning and a 

tractable number of prototypes to perform a prediction method. A smaller length leads to a 

smaller combination of PBs and a more accurate structural description. For a similar extent of 

the covering zone (around 92%) with series of three PBs, 64 motifs are only needed. 

Nevertheless, in terms of the pinning strategy the use of smaller words implies an increase of 

the number of possible transitions from a given word, i.e., the number of possible overlapping 

suffix and prefix words. Moreover, the amino acid distribution may be less specific and could 

lead to a lower rate of prediction. Conversely, a longer size of the structural words provides a 

reduction of the occurrence frequencies due to a larger combination of PBs, and an increasing 

structural variability. This lengthening provides a fortiori, a reduction of the mean numbers of 

suffix and prefix words per SW. Accordingly, the pinning strategy becomes less efficient 

particularly in the structural pathway building. Thus, the length chosen (i.e., 5 PBs 

corresponding to 9 residues) represents an appropriate compromise allowing a correct 

structural variability (rmsd ranged between 0.34 Å and at most 1.11 Å) and an accurate amino 

acid distribution specificity per SW. This choice is enough relevant for yielding a prediction 

rate close to 44% for long series of PBs. In addition, the covering ratio is highly dependent on 

this number ranging from 55% for 4 SWs, 80% for 20 SWs and 92% for 72 SWs. From this 

number, the value of the covering ratio reaches a plateau of 93% for 140 SWs. Therefore, a 

library of 72 SWs allows an almost maximal covering ratio and ensures a number of 
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transitions between SWs large enough to build the PSOWs. 

 

4.2. Number of sequence families 

As shown previously, the use of sequence families permits to improve the correct prediction 

rate thanks to an optimal splitting of the sequence window set associated with a given SW. 

The resulting subsets (denoted by SF-sets) are accordingly more homogeneous in terms of 

amino acid composition. It must be noted that the number of SF-sets plays a major role in the 

structure prediction improvement. The number of SF-sets was chosen according to the 

following constraints: (i) the number of sequences window in each SF-set must be similar 

whatever the own frequency of SWs;  ii) this number must be large enough for building an 

occurrence matrix (>100 sequence windows per subset); (iii) the amino acid specificities per 

position must be more strongly marked; (iv) a significant improvement of the prediction rate 

must be obtained. The numbers of SF-sets per SW chosen here obey all the enacted rules, 

ensuring a better balance between SF-sets for a given SW. In addition, the amino acid 

specificity is more marked, what explains the prediction rate gain.  

 

4.3. Choice of the threshold parameters in the pinning strategy 

The Neq0 parameter mainly controls the choice of the seed but only partially its extension into 

a structural pathway.  For small Neq0 (for instance Neq0<5), the prediction rate is more accurate 

as noted by the high weighting value of PNeq
5
 in the multiple regression of the accuracy rate 

(see section Prediction reliability). Conversely, the extent of the prediction region is smaller. 

Unlikely, for large Neq0, the covering ratio increases to the detriment of the prediction rate. 

The parameter F0 is in contrast only devoted to the extension and mainly governs the covering 

ratio. This value  may change drastically according to the F0-values (see results in Figure 5); 

but the prediction rate is slightly modified. Finally, the threshold parameters we chose, (Neq0 = 
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15 and F0 = 4) results from an optimal compromise between a maximal prediction rate (close 

to 44%) and a large covering ratio (around 85%).  

 

5. Conclusion 

In the present paper, we propose at the same time a new approach for predicting the local 3D 

structure of proteins but also an index aiming at estimating the quality of the prediction.  

One of the main choices carried out in the pinning strategy lies in the selection of a seed based 

on a minimal Neq and coupled to a maximum score value. We have assessed the fact that the 

Neq is an efficient index to start the construction of the pathways, i.e., always associated to a 

correct SW. The pathway extends by choosing new words with a maximum score value and 

compatible with the pathways previously defined. The use of SWs, focusing on the most 

observed local folds, improves the sequence-structure adequacy. The pinning strategy takes 

advantage of the SW overlapping, so facilitating the building of the different continuous 

pathways. The need for compatibility implies that the final prediction is not necessarily the 

optimal solution for whole SWs. Nonetheless, the strategy provides an efficient way for 3D 

reconstruction. Indeed, the predicted SWs correspond to 3D protein fragments in the 

structural databank. Finally, even if the improvement of the final prediction rate is limited, the 

procedure provides a good rate of prediction, close to 44% for an average covering ratio of 

85%, with local fragments structurally quite compatible. Furthermore, we show that 

homology could provide significant improvement for the prediction rate. 

As a final point, we address an important aspect of the prediction, never previously 

considered, namely a quantitative way for assessing the prediction accuracy. The index is only 

based on the amino acid composition of the sequence and the corresponding distribution of 

the scores. 

Additional improvements are possible. Indeed, as noticed by one of the reviewer, the choice 

of prefix (or suffix) SWs with last 4 PBs strictly identical to the ends of the SW selected seed, 
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is quite restrictive. SWs (or PBs) actually can be structurally similar. Accordingly, we could 

compute a structural confusion matrix between PBs (or SWs) and thus select among fuzzy 

prefixes (suffixes) with a high adequacy score.   

In conclusion, the field of pinning strategy is very large: it could be applied as a preliminary 

step to detect far homologous proteins in protein homology modeling. It could constitute an 

alternative way to threading approaches or at least, speed the detection of the appropriate 

candidates for threading. It surely could be of great interest in de novo modeling. Indeed, the 

use of dihedral angles -basis of the PB definitions- is quite interesting to explore folding 

process (Jurkowski et al. 2004); this information is of particular interest outside the repetitive 

structures (Kuang et al. 2004). 

In the future, we would like to improve the pinning strategy by a fast and efficient procedure 

of optimal pathways defined based on, for instance, a dynamic programming algorithm 

(conventionally used in sequence alignment). The procedure has already been applied in a 

similar context (Benros et al. 2004). However, many difficulties remain that indeed could 

make this strategy hard to use, even if preliminary results were promising. Alternatively, a 

greedy algorithm could be tested and would allow us to find sub-optimal structural pathways. 

Other important improvements are in progress and concern mostly the development of an 

appropriate algorithm for ensuring more accurate successions of SWs. It should in particular 

take advantage of the amino acid content of homologous sequences of the studied protein. It 

could be also interesting to analyze the PSOWs in regards to existing description of protein 

structures such as super secondary structures (Efimov 1997), Protein Units (Sowdhamini and 

Blundell 1995; Gelly et al. 2006) or domains (Alexandrov and Shindyalov 2003). 
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Figure 1. The backbone dihedral angle vectors (blue , red ) for the 5 C  in the 16 PBs. 

Colored bands (red for -helix, blue for -strand and green for coil) display the cumulated 

occurrence frequencies of the third residue in the secondary structures. These bands show the 

PBs location within secondary structures assigned according to a consensus approach 

proposed in (Colloc'h et al. 1993). It has to be noticed that the PBs description is more 

accurate than the conventional secondary structure description. A coarse correspondence 

between the two descriptions helps for comparison (see Table 1 of (de Brevern 2005) for 

more details). 
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Figure 2. Coding the structural databank and computation of the amino acid matrices of the 

Structural Words. (a) Each protein residue is translated into dihedral angles ( , ). (b) 

Fragment f, 5 residues in length and centered in position i, is selected as a succession of 8 

dihedral angles (from i-2 to i+2). (c) The rmsda is computed between each PB and fragment 

f. The minimal rmsda value is selected, and allows assignment of the PB in position i. All the 

protein fragments are coded according to this approach (see (de Brevern et al. 2000)). (d) 

From the distribution of the series of 5 consecutive PBs, the 72 most occurring Structural 

Words are selected and (e) analyzed. (f) For each SW, the corresponding sequence fragments 

are selected and (g) used to compute an occurrence matrix. 
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(caption next page) 
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Figure 3. Pinning prediction strategy. (a) Assessment of the scores associated to the 72 SWs. 

To predict the local protein structure associated to a given position s, an amino acid fragment 

of length 2l+1 (l = 7, centered on the central residue s) is taken. (b) Then, each amino acid 

occurrence matrices associated to the SWs are used to compute a score based on Bayes’ rule. 

(c) Location of the seed and definition of the structural pathways. From the prediction scores 

of the SWs, an entropy score can be computed and translated into an index called Neq 

(Number of equivalent). (d) The principle of the pinning strategy is to search for the lowest 

Neq values. (e) In the example given, it corresponds to the position i associated with the SW 

mnopa. This initial position is called a seed. Then we search for the most probable SWs that 

overlap the SW at positions s-1 (i.e., prefix) and s+1 (i.e., suffix). So here, (f) SW nopac at 

position s+1 and (g) SW mmnop is found at position s-1. (h) This selection creates the 

beginning of a PSOW mmnopac. The process is iterated until no overlapping SW associated 

to a high score can be found.  
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Figure 4. Improvement of the prediction rate using pinning strategy. The figure shows the 

comparison of the Bayesian prediction rate with the SWs (x-axis) and the pinning prediction 

with the SWs including the sequence families approach (y-axis). The values are in percents. 
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_____________________________________________________________________________ 

(a) 

POSITION   1   5   10   15   20   25   30   35   40   45   50   55   60   64 

PDB:3CHY   ADKELKFLVVDDFSTMRRIVRNLLKELGFNNVEEAEDGVDALNKLQAGGYGFVISDWNMPNMDG 

  STR.II.  --------EEEE---HHHHHHHHHHHHHH----EEEE--HHHHHHHHHH----EEEEE------ 

   PBs       kbccddddfbfklmmmmmmmmmmnopabdcddfbfklmmmmmmngoiabdcddfbdghiafk 

   pr. PBs   knopcdddffklkmmmmmmmmmmnopabfklffnopammmmnognoiaiaddfklpghfklp 

   NEQ         ¤O-----¤¤OOO##OO##O######O#-------OOO#O.OOOO#O¤¤--¤¤¤-¤¤¤OOO 

_____________________________________________________________________________ 

(b) 

 cov.   Q16  

  4.0 100.0  ......................mnopa................................... 

 27.4  85.3  kbccdddddfklmmmmmmmmmmmnopabd................................. 

 44.4  80.0  kbccdddddfklmmmmmmmmmmmnopabd................................. 

 57.3  83.1  kbccdddddfklmmmmmmmmmmmnopabd................................. 

 71.0  78.4  kbccdddddfklmmmmmmmmmmmnopabd........mmmmn.................afk 

 82.3  73.5  kbccdddddfklmmmmmmmmmmmnopabd....bfklmmmmnopabd...cdfkl....afk 

 87.1  69.4  kbccdddddfklmmmmmmmmmmmnopabd....bfklmmmmnopabd...cdfklm...afk 

 87.9  68.8  kbccdddddfklmmmmmmmmmmmnopabd....bfklmmmmnopabd...cdfklm...afk 

 87.9  68.8  ########.....################    ########......   ##....   ### 

___________________________________________________________________________ 

(c) 

 93.6  69.8  kbccdddddfklmmmmmmmmmmmnopabd.....fklmmmmnmmnopabdcdfklm...afk 

             ########.....################     #######.#..#.#####....   ### 

 92.7  66.1  kbccdddddfklmmmmmmmmmmmnopabd.......lmmmmnmmnopabdcdfklmdfklmk 

             ########.....################       #####.#..#.#####.........# 

 88.7  71.8  kbccdddddfklmmmmmmmmmmmnopabd.......lmmmmnmmnopabdcdfklmdfklmk 

             ########.....################       #####.#..#.#####.........# 

 87.9  75.2  kbccdddddfklmmmmmmmmmmmnopabd.......lmmmmnmmnopabdcdfklmdfklmk 

             ########.....################       #####.#..#.#####.........# 

_____________________________________________________________________________ 

(sequence continued) 
_____________________________________________________________________________ 

(a) 

POSITION    65   70   75   80   85   90   95  100  105  110  115  120  125  128 

PDB:3CHY     LELLKTIRADGAMSALPVLMVTAEAKKENIIAAAQAGASGYVVKPFTAATLEEKLNKIFEKLGM 

   STR.II.   -HHHHHHHHHH--------EEEEE----HHHHHHHHHH---EEEE----HHHHHHHHHHHHH-- 

   PBs       lmmmmmmmpmklmmpccddddfbdcfklmmmmmmnopabdcdddddfklmmmmmmmmmmmno 

   pr. PBs   ammmmmmmnopammpcmdmmmfklnmnopmmmmmnopnopacddklfklmmlmnopammmno 

   NEQ       ¤##O-¤O#¤¤OO--O-¤¤--¤¤¤OO¤-O-¤¤###O###O#OOO-¤¤OO#O¤¤¤####O##   

_____________________________________________________________________________ 

(b)  

 cov.   Q16  

  4.0 100.0  .............................................................. 

 27.4  85.3  .....................................................mmmmm.... 

 44.4  80.0  ..................................nopab..ddfklmmmmmmmmmmmmmmno 

 57.3  83.1  lmmmm...................dfklmmmmmmnopabd.ddfklmmmmmmmmmmmmmmno 

 71.0  78.4  lmmmmmmmnopabd..........dfklmmmmmmnopabd.ddfklmmmmmmmmmmmmmmno 

 82.3  73.5  lmmmmmmmnopabd..........dfklmmmmmmnopabd.ddfklmmmmmmmmmmmmmmno 

 87.1  69.4  lmmmmmmmnopabdmmmmm.....dfklmmmmmmnopabd.ddfklmmmmmmmmmmmmmmno 

 87.9  68.8  lmmmmmmmnopabdmmmmmm....dfklmmmmmmnopabd.ddfklmmmmmmmmmmmmmmno 

 87.9  68.8  ########............    .############### ##......############# 

___________________________________________________________________________ 

(c) 

 93.6  69.8  lmmmmmmmnopabdmmmmmmmmmmnfklmmmmmmnopabdacdddddmmmmmmmmmmmmmno 

             ########.................###############..####...############# 

 92.7  66.1  lmmmmmmmnopabdmmmmmmcfklmmklmmmmmmnopabdacddd..mmmmmmmmmmmmmno 

             ########.............#....##############..###....############# 

 88.7  71.8  lmmmmmopabd.mmpcc....fklmmklmmmmmmnopabdacddd..mmmmmmmmmmmmmno 

             ######..... #####    #....##############..###  ..############# 

 87.9  75.2  lmmmmmopabd.mmpcc....fklmmklmmmmmmnopabd...dddfklmmmmmmmmmmmno 

             ######..... #####    #....##############   ################### 

_____________________________________________________________________________ 

- : Neq > 15.   ¤ : 10. < Neq < 15.   O :  5. < Neq < 10.   # :  Neq < 5. 

- : coil H : helix E : strand 
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Figure 5. Building of the PSOWs the pinning strategy for the signal transduction protein of 

Escherichia coli. (a) The sequence of 3chy is given with the consensus secondary structure 

assignment (Colloc'h et al. 1993), the PBs assignment, the PBs prediction done with 

LocPred software [(LocPred; (de Brevern et al. 2004; Alland et al. 2005)] and the Neq-

values associated to the prediction with SWs. (b) Selection of the different seeds and 

extension for Neq0 = 15 and F0 = 4. On the left part of each line are given in percents the 

extent of the covering ratio (cov.) of the amino acid sequence and the prediction rate 

associated (Q16). (c) Final results obtained for F0 = 8, 12, 20 and 24. F0 is a parameter 

controlling the extension of the seed (i.e., the initial Structural Word) into structural pathways. 

# corresponds to a correctly predicted PB. 
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___________________________________________________________________________ 

(a) 

POSITION   1   5   10   15   20   25   30   35   40   45   50   55   60   64 

  PDB:3CHY ADKELKFLVVDDFSTMRRIVRNLLKELGFNNVEEAEDGVDALNKLQAGGYGFVISDWNMPNMDG 

  3CHY76   MDKSMKILVVDDFPTMRRIVRNLLKELGYSNVDEAEDGLAGLARLRGGGYDFVISDWNMPNLDG 

  3CHY66   LNKNMKILIVDDFSTMRRIVKNLLRDLGFNNTQEADDGLTALPMLKKGDFDFVVTDWNMPGMQG 

  3CHY42   QASTISVLVVDDQLTMRALIRNALQQIGFKDIREAPDGEEALKNLLAKPANLVISDFNMPKMDG 

  3CHY37   GNTMAKVLAVDDSISIRQMVSHTLQDAGYE-VETAADGREALAKAQKARFDVIISDVNMPVMTG 

___________________________________________________________________________ 

(b)  

  PDB:3CHY     ¤O-----¤¤OOO##OO##O######O#-------OOO#O-OOOO#O¤¤--¤¤¤-¤¤¤OOO 

  3CHY76       -¤---¤¤¤¤O¤¤##OO##O######O#-------¤¤¤¤#¤¤#O¤O¤¤¤¤OO¤¤--¤¤OO¤ 

  3CHY66       ¤O¤O-¤-OO¤OO##OO##¤####O##--O---O--¤---¤-¤#O#O¤-¤#¤----¤¤-#O 

  3CHY42       ¤¤¤OO-¤O#¤O-##OOO########-#-¤-O#OOOO#O#OO¤O-------¤¤----¤#¤O 

  3CHY37       ¤¤----¤--¤---------OOO###¤#----¤O¤OOO#OOOOO#OO¤O-#-----O-¤¤¤ 

___________________________________________________________________________ 

(c) 

  TRUE       kbccddddfbfklmmmmmmmmmmnopabdcddfbfklmmmmmmngoiabdcddfbdghiafk 

  3CHY       kbccdddddfklmmmmmmmmmmmnopabd....bfklmmmmnopabd...cdfklm...afk 

  3CHY76     kbccdddfbfklmmmmmmmmmmmnopacddfklmmmmmmmmmmmnopabdddfklm...afk 

  3CHY66     kbccdddfbfklmmmmmmmmmmmnopafklmmmm.iacddmmmmnopabdcdfklm.lmmmm 

  3CHY42     dddddddfbfklmmmmmmmmmmmnopabdcddfbfklmmmmmmmmmmm..cdfklmmmmafk 

  3CHY37     cdddddfb.mklmmmmmmmmmmmnopacddddfklmmmmmmmmmnopabd........fbfk 

___________________________________________________________________________ 

 

(sequence continued) 
_____________________________________________________________________________ 

(a) 

POSITION    65   70   75   80   85   90   95  100  105  110  115  120  125  128 

  3CHY       LELLKTIRADGAMSALPVLMVTAEAKKENIIAAAQAGASGYVVKPFTAATLEEKLNKIFEKLGM 

  3CHY76     LAMLKEIRADASLTHLPVLMVTAESKKENIIAAAQAGASGYVVKPFTAATLDEKLNKILEKMAK 

  3CHY66     IDLLKNIRADEELKHLPVLMITAEAKREQIIEAAQAGVNGYIVKPFTAATLKEKLDKIFERL-- 

  3CHY42     LALLRAVRSHPPIRQTAFVMLTGRADRELVQRAVQFGVNNYCVKPFTVQGLKEKIEQVFGQLT- 

  3CHY37     FEFVKAVRMQSQYKFTPILMLTTETSPEKKQEGKAVGATGWLVKPFNPETLLKTLQRVL----- 

_____________________________________________________________________________ 

(b)  

  3CHY       ¤##O-¤O#¤¤OO--O-¤¤--¤¤¤OO¤-O-¤¤###O###O#OOO-¤¤OO#O¤¤¤####O## 

  3CHY76     ¤#¤¤-O¤O¤-O-O¤O-¤#OO¤¤-----O-¤-###O###O#OOO-¤¤¤OO¤¤¤¤#O##### 

  3CHY66     ¤OOOO¤-O--¤-¤¤#--¤¤O--¤O¤--O¤¤¤#######O#OO¤--O¤O#¤O-¤####¤## 

  3CHY42     ¤##O¤-¤O--------¤¤--¤O--¤¤O#O#O¤#####O¤¤#-¤-¤¤O--¤¤--#O#¤-#- 

  3CHY37     ¤OO----¤----#¤---O¤¤¤--¤¤O-¤-OO¤¤¤¤--¤-OO¤O¤O#OO####¤O#O-¤-- 

_____________________________________________________________________________ 

(c) 

  TRUE       lmmmmmmmpmklmmpccddddfbdcfklmmmmmmnopabdcdddddfklmmmmmmmmmmmno 

  3CHY       lmmmmmmmnopabdmmmmmm....dfklmmmmmmnopabd.ddfklmmmmmmmmmmmmmmno 

  3CHY76     lmmmmnopabdmnopacddddfkldfklmmmmmmnopabdacdddddmmmmmmmmmmmmmmm 

  3CHY66     mmmmmpccklmmmmpcc....bfklmmmmmmmmmnopabdcddddfkllmmmmmmmmmmmmm 

  3CHY42     lmmmmpm......fbdcdddehmklmmmmmmmmmnopabdacddddfklmmmmmmmmmmmmm 

  3CHY37     lmmmmmmmmmmnopacdddddfklmmmmmmmmm..mmnopacddddfklmmmmmmmmmmmmm 

_____________________________________________________________________________ 

- : Neq > 15.   ¤ : 10. < Neq < 15.   O :  5. < Neq < 10.   # :  Neq < 5. 

 

 

Figure 6. Prediction for four homologous sequences of 3chy. The sequence identity equals to 76%: 

SwissProt code (Bairoch et al. 2004) p94342 (labeled 3chy
76

), 66%: q9kd5 (3chy
66

), 42%: q87718 

(3chy
42

), and 37%: q9kkk8 (3chy
37

). (a) multiple alignment of the five sequences (CLUSTALW 

(Thompson et al. 1994)), (b) the variation of Neq-value along each sequence and (c) the predicted 

PBs for Neq0=15 and F0=4. 
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Figure 7. Estimation of the prediction rate. Comparison of the expected prediction rate QPSe 

computed with a multiple regression equation and the observed prediction rate Q16 (in 

percents).  
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 Prediction with PBs Prediction with SWs 

Prediction Bayes’rule Bayes’rule Bayes’rule 
Pinning 

strategy 

Pinning 

strategy 

Sequence 

Families 
No Yes

†
 No No Yes 

Q16 value 

(%) 
34.4 40.7 38.9 39.9 43.6 

 

 

Table 1. Prediction rates. The different prediction using the Bayesian prediction with the 

Protein Blocks or with the Structural Words, and, with the pinning strategy with or without 

Sequence Families. 
†
 The Sequence Families used are the ones defined in a previous work (de 

Brevern et al. 2000). 
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