
 1 

Protein structure mining using a structural alphabet 

M. Tyagi
1,§

, A.G. de Brevern
2 
, N. Srinivasan

1,3
 and B. Offmann

1,* 

 

1
Laboratoire de Biochimie et Génétique Moléculaire, Bioinformatics Team, Université de 

La Réunion, BP 7151, 15 avenue René Cassin, 97715 Saint Denis Messag Cedex 09, La 

Réunion, France. 

2
 INSERM UMR-S 726, Equipe de Bioinformatique et Génomique Moléculaire (EBGM), 

Université Paris 7 – Denis Diderot, case 7113, 2, place Jussieu, 75251 Paris Cedex 05, 

France. 

3
Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India.  

 
§
 Present Address: Computational Biology Branch, National Center for Biotechnology 

Information (NCBI), National  Library of Medicine (NLM), 8600 Rockville Pike, 

Bethesda, MD 20894, USA.  

 
* 
Corresponding Author 

 

 

List of abbreviations :  

 

Protein Blocks : PBs 

Secondary structure elements : SSEs 

Structural alphabet : SA 

Local alignment : LA 

Global alignment : GA 

Protein Block Expert : PBE 

Root Mean Square Deviation : rmsd  

Extreme value distribution : EVD 

 

  



 2 

Abstract 

We present a comprehensive evaluation of a new structure mining method, called 

PB-ALIGN. It is based on the encoding of protein structure as 1D sequence of a 

combination of 16 short structural motifs or protein blocks (PBs). PBs are short motifs 

capable of representing most of the local structural features of a protein backbone. Using 

derived PB substitution matrix and simple dynamic programming algorithm, PB 

sequences are aligned the same way amino acid sequences to yield structure alignment. 

PBs are short motifs capable of representing most of the local structural features of a 

protein backbone. Alignment of these local features as sequence of symbols enables fast 

detection of structural similarities between two proteins. Ability of the method to 

characterize and align regions beyond regular secondary structures e.g. N and C caps of 

helix and loops connecting regular structures puts it a step ahead of existing methods 

which strongly rely on secondary structure elements (SSEs). PB-ALIGN achieved 

efficiency of 89% in extracting true fold from a large database of 7259 SCOP domains 

and was successful in 96% cases to identify true super family members. On comparison 

to 13 existing structure comparison/mining methods, PB-ALIGN emerged as the best on 

general ability test dataset and was at par with methods like YAKUSA and CE on non-

trivial test dataset. Furthermore, the proposed method performed well when compared to 

flexible structure alignment method like FATCAT and outperforms in processing speed 

(less than 45 sec per database scan). This work also establishes a reliable cut-off value for 

the demarcation of similar folds. It finally shows that global alignment scores of 

unrelated structures using PBs follow an extreme value distribution. PB-ALIGN is freely 

available on web server called Protein Block Expert (PBE) at http://bioinformatics.univ-

reunion.fr/PBE/.  

 

http://bioinformatics.univ-reunion.fr/PBE/
http://bioinformatics.univ-reunion.fr/PBE/
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Introduction 

Protein Data Bank (PDB)
1
 offers to date more than 43,000 protein structures in 

the public domain. This data encloses wealth of information, which plays a critical role in 

our understanding of protein function, its evolution and sequence to structure relationship 

that further unfolds improved solutions to structure prediction and validation. Mining of 

information from this huge amount of data plays a crucial role and most of the time 

information includes measure of structural similarities between two or more proteins. 

Steady increase in number of known proteins has made it impossible for manual 

inspection of each and every protein present in PDB with rare exception of SCOP
2
 

database based on manual classification of protein domains. To overcome this limitation 

many groups have developed various structure comparison methods
3,4

. 

 

Structure comparison between two proteins has been of major interest from the 

time when Perutz
5
 used structure alignment to highlight structural similarities between 

myoglobin and hemoglobin despite sharing low sequence similarities. Common 

functionality between these two proteins is not accidental, evolutionary relationship and 

shared structural features are the reasons that describe above phenomena. Structure 

comparison methods are aimed to find these structural similarities to foresee protein‟s 

function specially at low sequence similarity, to study evolutionary relationship and basic 

understanding of protein folding problem.  

 

Furthermore, comparison and alignment helps in organization and classification of 

known proteins
6,7

, mining of similar known proteins for newly solved structure
8-11

, 

identification of functionally important sequence pattern in homologous proteins
12,13

 and 

also provides point of reference for sequence alignment methods
14-16

. Structure 

comparison and alignment is more challenging and complicated problem due to number 

of reasons. First problem is about what to compare? Once this decision is made it is very 

difficult to obtain optimal alignment or to identify among many alignments as there are 

number of ways to align two structures. Also, in presence of high structural similarity it is 
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challenging to make out if it arises from evolutionary constraint or is just an analogy due 

to physical constraint on fold space.  

 

There are various methods for structure comparison based on what level structure 

is represented; some methods use all atom model but are limited to small substructures
17

; 

more common approach involves backbone comparison of two proteins based on 

backbone atoms e.g. C  atom or internal distance matrices
9,18,19

 or internal angles
10,20,21

 

estimated from backbone atoms. Alignment of structures based on initial alignment of 

secondary structure elements (SSE) and further refinement through iteration is also a 

commonly used approach
11,22,23

. Graph theory based SSE alignments provides another 

alternative solution for structure comparison
24,25

. Methods using backbone coordinates 

for structure comparison relies on root mean square deviation measure between two 

proteins and objective function has to minimize this value to identify structural 

similarities. Such methods
26-28

 are useful for comparing two proteins or substructures but 

they are computationally expensive, making them too slow for mining of similar 

structures from large database. Recently developed methods like FlexProt
29

 and 

FATCAT
30

 use flexible structure alignment approach by introducing twists between 

aligned fragment pairs to improve overall superposition and try to overcome the 

limitations of rigid body structure alignment techniques.  

 

Popular methods like DALI
9
, SSAP

19
 and CE

18
 use reduced representation of 

protein backbone in terms of distance matrices. DALI uses hexapeptide distance matrices 

combined with dynamic programming and Monte Carlo optimization technique to obtain 

global alignment. The Combinatorial Extension (CE) method combines aligned short 

structural fragments into larger alignment paths and apply dynamic programming to 

generate global alignment. Both these methods are most commonly used for structure 

comparison and fast structure mining though sometimes absence of homologue in 

database can increase search time considerably.  

 

Most of these methods perform structure alignment based on secondary structure 

elements (SSE) or use them to obtain initial starting point. Protein structures can also be 
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approximately described using structural alphabets (SA), which are recurring short 

structural motifs found across protein 3D space (for a review, see Offmann et al
31

). Many 

groups have identified these recurring short motifs capable of describing protein 

backbone
32-34

 and are believed to be more informative in protein structure analysis
35

. 

 

Use of structural alphabets for structure comparison has been attempted only in 

the last decade. 3D-Blast is an example of one such recently developed approach, which 

uses a 23 states structural alphabet to describe the backbone
36

. This method, uses BLAST 

as a search method using a structural alphabet substitution matrix to find the longest 

common substructures with high-scoring segment pairs. Though this method uses an E-

value as measure of statistical significance of an alignment and generates results with 

performance comparable to known methods, the authors still did not assess the 

confidence index of the methodology. 

 

Using a set of 16 pentapeptide structural motifs known as protein blocks (PBs)
37,38

 

we have introduced a new methodology of analyzing protein structures
39

. Each of these 

16 motifs are represented by character alphabet (a, b, c,…p) and are described by vector 

of 8 dihedral angles ( ) making it possible to represent 3D protein structure by a string 

of 1D sequence of PBs. Taking advantage of this reduced representation of protein 

structure as mere sequence of symbols, we recently derived a PB substitution matrix and 

investigated its potential utility in protein structure analysis
31,39

 or for discovering 

functional local structural motifs
40

.  

  A new structure comparison method (PB-ALIGN) useful for mining protein 

structural databases has been developed. This approach is based on PB sequence 

alignment using the newly derived PB substitution matrix which has been developed
39

. 

The basic premise of structure alignment is very simple and is based on encoding of 

protein backbone by a sequence of characters representing PBs. Further; these PB 

sequences are aligned just like amino acid sequences using dynamic programming 

combined with a substitution matrix. Capability of PBs to represent local structure 

variations and alignment of these PBs provides more intuitive knowledge of structurally 

similar regions in two proteins when compared to SSE representation. Structure 
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alignment based on PB sequence is not only able to align regular substructures but also N 

and C cap regions. It also highlights structural variations in loops that connect regular 

secondary structures. PB sequence alignment to obtain structure alignment is a very fast 

procedure of structure mining and allows large database mining in real time
41

.  

 

In the present study, we provide a comprehensive evaluation of the methodology 

compared to existing techniques. We also provide more thorough analysis of the 

efficiency rate of mining proteins from a large database, using PBE server. In addition we 

present optimal gap penalty for both local
42

 and global
43

 alignment techniques. Our 

results show PB-ALIGN provides equivalent or better efficiency rate in mining of 

structures in from large database when compared to methods like DALI
9
, CE

18
 and 

FATCAT
30

 and is much faster in all of them. Our method achieved 89% success rate in 

extracting true fold from pairwise alignment of 7259 against 7259 SCOP domains. In 

response to difficult test cases PB-ALIGN provides comparable results to more robust 

and complex methods and also gave satisfactory results while handling multi domain 

proteins. We addressed the question of alignment score threshold for making decision 

that two aligned structures correspond to same fold. The statistical characteristics of the 

distribution of global alignment scores were finally examined. 

Materials and methods 

Data set used for evaluation of PB-ALIGN  

In the present study we have used batteries of test dataset to assess the 

performance PB-ALIGN in different experimental conditions. Database of 7259 SCOP 

(v1.65) domains filtered at 95% identity implemented in PBE web server
8
 are used for 

assessing the mining efficiency of the method. Distribution of seven SCOP classes is as 

following: 1337 (18.5%) alpha domains, 2077 (28.6%) beta domains, 1387 (19.0%) alpha 

beta domains, 1529 (21.0%) alpha plus beta domains, 700 (9.6%) small domains, 89 

(1.2%) multi-domain, and 140 (1.9%) membrane domains. PB-ALIGN was compared 

with 13 existing structure mining/comparison methods based on three different datasets. 

The general ability of the methods to extract similar structure proteins was tested on 61 
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query proteins belonging to ten protein families, representing the four CATH main 

classes (mainly , mainly b, mixed  and few secondary structures). Same dataset was 

used in two independent studies done by Novotny et al
3
 and Carpentier et al

10
. Ability of 

the methods to handle multi domain proteins was evaluated based on two multi domain 

queries selected by same groups. 14 non-trivial query-target pairs were taken from study 

done by Carpentier et al
10

 to test the robustness of the method in detecting difficult 

structural similarities. Furthermore, we performed comparison of PB-ALIGN with 

flexible structure alignment program FATCAT, based on pairwise alignment of 10 

difficult pairs as used by Ye et al
30

.  

Encoding 3D structures into PB sequence 

Local backbone features of a protein can be represented by 16 prototypes of five 

residue long motifs called PBs
38

. Each PB is characterized by vector of eight dihedral 

(  angles associated with five consecutive C  atoms and the 16 PBs are denoted by a 

character set varying from a to p. Encoding of protein backbone into PB sequence is a 

two step process; (i) coordinates of backbone atoms are used to calculate sequence of 

( ) angles, (ii) An overlapping window of eight ( ) angles (corresponding to five Ca 

residues) is moved along the backbone. PBs for each window is assigned on the basis of 

smallest dissimilarity measure called root mean square deviation on angular values or 

rmsda 
44

 calculated between observed ( ) values in the window and the standard 

dihedral angles for various PBs. By following the above simple procedure a 3D structure 

of a protein can be encoded into a 1D sequence of PBs representing local structural 

information as sequence of structural alphabets.  

PB substitution matrix 

A 16 x 16 PB substitution matrix has been recently derived by our group
45

. The 

substitution scores between PBs were evaluated by counting the number of substitutions 

occurring in conserved regions of structurally aligned homologous proteins. These 

proteins are selected from large database, PALI
46,47

 containing structure-based pairwise 

and multiple alignments of homologous proteins of known three-dimensional structures. 

The database uses a rigid-body superposition program, STAMP
48

 to generate structure 
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based alignments. In total 21,503 pairwise alignments from 1197 SCOP families were 

analyzed which accounted for more than 2,000,000 PB substitutions. The raw frequencies 

are normalized and expressed as the log-odds score. The obtained scores provide extent 

of preference of a PB in a protein for its retention or substitution and allow to evaluate 

equivalence between homologous structures. The matrix has been validated in our 

previous studies and has been shown to be useful in identification of structurally 

equivalent regions in two proteins. In addition, the matrix has potential applications in 

differentiating between conformational differences and rigid body shifts among 

homologous protein structures
45

.  

Gap penalty optimization 

In our previous study we selected arbitrarily gap penalty of –0.5 on manual 

inspection of PB alignments. Here we follow extensive procedure to suggest optimal gap 

penalties. Penalty optimization procedure is based on two criteria; effect of gap penalty 

on overall mining efficiency of similar structure proteins and quality of alignments 

generated. Structure mining efficiency is measured by counting number of times a true hit 

at class, fold, super-family and family level is obtained when top 10, 5 and first ranking 

alignments are considered for a given query. Quality of alignment is measured in terms of 

rmsd value obtained from superimposition of protein pairs based on PB alignment. 

Superimposition is performed using ProFit
49

 software where equivalent zones are 

specified by PB alignment. 

  

We performed a comprehensive study to suggest optimal gap penalty for both 

local alignment (LA) and global alignment (GA) algorithms using 2000 randomly 

sampled domains. A database of 2000 x 2000 pair-wise PB alignments was generated to 

perform above two analysis. Attention was given to keep the relative proportion of seven 

major classes similar to as in original databank. Jackknife approach was used to measure 

mining efficiency and alignment quality measure was done by considering only pairs 

belonging to same family. For global alignment of PB sequences we used following set 

of gap penalties –0.5, -2.0, -2.5, -3.0, -5.0 and optimal gap penalty for LA algorithm was 

selected from following set of penalties -0.5, -2.0, -3.0, -5.0 and –7.0. 
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Results and discussion 

Effect of gap penalty on mining similar protein structures 

Using 2000 randomly sampled domains, we assessed efficiency of both local and 

global alignment techniques to extract structurally similar proteins at class, fold, super-

family and family levels for a given gap penalty. For a given query, hits are calculated by 

considering top 10, 5 and first ranking alignments. In the following analysis we present 

results from top 10 ranking alignments.  

 

Table 1 reports efficiency rate for mining proteins at class, fold, super-family and 

family level considering top 10 ranking alignments based on GA algorithm. Bold values 

indicate best efficiency rate achieved at each level. With varying gap penalty from –0.5 to 

–3.0 negligible effect on efficiency of extraction of proteins was detected. Not more than 

0.6% of change in seen in efficiency rate in this range of gap penalties. Further increase 

reduces the efficiency of the method by almost 3% as illustrated from low success rate 

achieved at –5.0 penalty. Among penalties used in this analysis, gap penalty of –2.0 

seems gave best results though performance was not very much higher from other 

penalties used.  

 

Table 2 shows the success rate of mining similar proteins using LA at class, fold, 

super-family and family level when top 10 ranking alignments are taken into account. 

Due to the basic nature of the algorithm it was suspected higher gap penalty will yield 

better results and efficiency rate can be inferior to GA. Indeed the two assumptions are 

true from the above tables. Efficiency rate has increased by almost 10% at fold level by 

changing penalty from –0.5 to –2.0 but overall success rate is slightly lower when 

compared to global alignment results. One of the reasons for low efficiency compared to 

GA can be due to the dataset used in our analysis. Since we have taken well defined 

domains as query against well defined domain database hence global alignment has an 

advantage here due to basic nature of the algorithm. This advantage can be limiting factor 

for GA in case we use complete protein chains as query without any knowledge of 

domain boundary. Indeed this is further documented in the following sections where LA 
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out performs in real case scenario and is able to extract true domains with high scores 

from the database whereas GA fails due to more number of gaps introduced in the 

alignment. On varying penalty from –2.0 to –7.0, the variation on efficiency rate is very 

moderate though best results are obtained at –3.0 or –5.0 gap penalty.  

 

Similar efficiency rates achieved by neighboring gap penalties, both in local and 

global alignment techniques indicate variation in gap penalty increases or decreases 

success rate only to certain extent. From the previous analyses, no clear favorable gap 

penalty can be considered as optimal. From manual inspection of alignments obtained 

from various penalties indicated even though mining rate is somewhat constant, gap 

penalty can have more impact on quality of alignment produced. Based on this 

assumption, we further studied the relationship between gap penalty and quality of 

alignment in the following section. 

 

Effect of gap penalty on structural alignment quality 

In this analysis we performed a very simple exercise whereby, for each gap 

penalty, we generated both local and global alignments between pairs of homologous 

structures belonging to the same family. To assess the quality of PB based alignments, we 

used rmsd values from the superimposition of aligned residues. Each PB alignment was 

converted into corresponding amino acid (AA) alignment and was presented to ProFit 

software, which further performed least square fit of backbones based on AA alignment. 

List of rmsd values for every pair was complied at different gap penalties. For 

comparison of overall effect of gap penalty on rmsd values, we plotted the average 

improvement in rmsd values on different gap penalties with respect to rmsd values 

obtained at penalty of –0.5. Basically we have tried to highlight the change (decrease) in 

rmsd values of various pairs at different gap penalties when compared to values obtained 

at gap penalty of –0.5.  Figure 1a shows the increase in improvement of average rmsd 

values at different gap penalties (–2.0, -2.5, -3.0 and –5.0) for GA algorithm. From the 

above figure it is very clear that increase in negative gap penalty has shifted more number 

of pairs towards lower rmsd values. For example, on varying gap penalty from –0.5 to –
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3.0 almost 18% of alignment pairs have lower rmsd values in interval of 0.5Å to 1Å and 

gap penalty of –3.0 and –5.0 has brought improvement of 1Å or more to almost 44% and 

47% homologous pairs respectively (data not shown). Figure 1b shows similar 

improvement in local alignment quality by varying gap penalty from –0.5 to –7.0. Once 

again overall improvement in rmsd values is seen at various gap penalties. Most fruitful 

penalties were –5.0 and –7.0 where average improvement of more than 2 Å is observed.  

 

Based on efficiency of mining similar proteins and improvement in quality of 

alignment at various penalties level it was found –3.0 and –5.0 were optimal gap 

penalties for global and local alignment algorithm respectively. For GA penalty of –2.0 

yielded best results for extraction of similar proteins but gap penalty of –3.0 was optimal 

value in terms of overall alignment quality and mining rate. In case of LA algorithm even 

though –7.0 gap penalty was able to give better rmsd values the extraction rate was 

inferior to –5.0 penalty by almost 1% and hence –5.0 was chosen as optimal penalty 

having balanced results for both alignment quality and mining of proteins.   

Mining of protein structures 

 Efficiency of PB-ALIGN method to extract structurally similar proteins at 

different SCOP classification level was tested in the following study. We have analyzed 

7251 domains selected from SCOP data bank filtered at 95% identity and performed all 

against all pairwise global alignment of PB sequences with an optimized gap penalty of –

3.0. A class confusion matrix has been generated to from 7259 x 7259 pair-wise 

alignments to assess discriminatory power of simple PB alignments to assign correct 

SCOP class. The method was evaluated by counting if the true class, fold, superfamily or 

family member is present within top 10 hits, ranked by normalized score. It is noteworthy 

that performance of PB-ALIGN was evaluated in a jack-knife / leave-out approach where 

each query domain was removed from database prior to testing. This corresponds to real-

life situations when one will have to query structural databases for mining similar folds 

and to what is current practice in published studies for evaluation performance of 

structure mining methods
3,4,9,10,50

. However, so as to evaluate efficiency of PB-ALIGN to 

assign high classification levels and capture remote homology, we also evaluated the 
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situation where members from same family as query was removed. So the dataset size 

used in all cases dynamically changed depending upon the query protein. 

Table 3 summarizes the results obtained for each level, mainly class, fold, 

superfamily but also family at three different ranks, 1
st
, 5

th
 and 10

th
. True class of a query 

protein can be found with an efficiency rate ranging between 92.5% and 98.2% when first 

10 ranked alignments were considered. Possibility of finding true fold among Top10 hits 

showed distinct performance with a hit rate of 65.1% when whole family is jack-knifed 

and 87.4% when only query is left-out and similar performance were observed at 

superfamily level. Taking into account only the first hit (Top1 column in Table 3) we 

found between 76.1 and 93.1% success in finding true class. Among these first ranked 

hits, about 81.3% was from same fold when only query was jack-knifed but of 53% when 

whole family was removed. Similar performance was obtained at superfamily level (47.4-

79%). Finally, on average, one is able to find true family of protein in 95% of cases.  

It is further evidenced from our results that, when higher level is properly 

identified, the chance to identify subsequent lower level is very good. For example, from 

Table 4, when whole family is removed, and considering Top1 hits, out of a total of 3846 

queries that were properly assigned at the fold level, 3438 (i.e 89.%) were also correctly 

predicted in their corresponding superfamilies. PB-ALIGN hence features robust nature 

in locating super-family relationships (functional relationships). The biggest decrease in 

prediction efficiency is observed between class and fold levels. However, it is noteworthy 

that because we look only at Top10 or Top 1 for performance evaluation, in some 

instances, for e.g. the query d1g73a_ from scop family a.7.4.1, the good hit is found only 

at lower rank, here at 69
th

 rank because top scores were populated with redundant hits 

from homologous members of other folds (e.g. 23 hits from a.1.1.2. family, 14 hits from 

a.1.1.3 family, etc.). 

These overall results indicate that mining similar structures using simple PB 

alignment methodology is efficient for identifying class and super-family relationships 

despite the presence of confusion across fold alignments. Indeed, when whole family was 

left-out, though it performed reasonably well, structural relationship at fold level was 

more difficult to capture using PB-ALIGN when compared to other structural levels. This 

highlights the importance of quality of information and its coverage in the databases used 
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for mining structures. However, in real life situations, users of structure mining tools such 

as PB-ALIGN generally expect that their structures be compared to whole PDB or 

representatives from all families. Hence, overall result presented in Table 3 is useful to 

assess how the method is performing when a query has a counterpart from the same 

family in the PB-ALGN database. It also shows that the method is able to capture higher-

levels relationship (superfamily or fold) when the query has no homologues in the 

database. These encouraging results demonstrate the feasibility of the method to be useful 

in projects like structural genomics.  

 

What Table 3 does not tell us is how much confusion exists between SCOP 

classes due to reduced representation of 3D structure using PB alignment. In order to 

address this question, a class confusion matrix was generated, using a 7259 x 7259 

pairwise alignment, as shown in Table 4. It is important to analyze this confusion because 

by using 1D PB representation some topological information maybe lost and it becomes 

crucial for proteins sharing similar succession of secondary structure elements (SSE). 

Again both situations where query-only or whole family related to query is removed from 

the database were analyzed. 

 

As shown in Table 4, beta class was most efficient  (89.3 - 96.5%) to identify 

itself, closely followed by alpha and alpha beta (AB) class which have efficiency rates of 

83.7 - 95% and 83.8 - 95.7% respectively. Alpha plus beta (AplusB) class was found to 

be confused with other classes with a 88.6% success rate when only query was left-out 

and a 56.4% rate when family was jack-knifed. Almost half of the false hits from Alpha 

plus beta are confused with Alpha-Beta class. Overlap between AB and AplusB is 

understandable taking into the fact that both have successions of helical and sheet 

regions. Performance for identifying small proteins was equivalent to AplusB class with 

rates of 65.3 – 89.8%. Other two classes has very contrasting results based on the jack-

knife procedure ; when whole family is removed, probability to get true class as Top1 hit 

drops from 72.8 – 78.6% to 20.2 – 37.8% for membrane and multidomain proteins. 

Multidomain proteins are mostly confused with Alpha-Beta class while membrane 

proteins, as expected, are mostly confused with Alpha class.  
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Computation of class prediction matrix i.e. confusion matrix using large number 

of domains highlights the efficiency of PB alignment. Good efficiency rate is an 

indication that reduced complexity of 3D space and absence of topological information in 

PB representation has not affected the discriminatory power of PB alignment. This 

efficiency level can be attributed to combination of PBs connecting similar SSEs in 

different topologies (see below). 

Efficiency rate within SCOP classes 

Each class was studied separately to quantify how success rate at fold, super 

family and family was distributed within each class. Table 5 gives success rate for seven 

major SCOP classes namely, alpha, beta, AB, AplusB, multi-domain, membrane and 

small proteins when whole family related to the query was removed or when the query 

only was jack-knifed.  

 

Success of finding true fold among Top10 hits was best for beta and AB class 

with an efficiency of 71.1 - 93% and 64.9 - 92.2% respectively, followed by membrane 

(87.8 – 90.7%), small (66.7 - 89.4%), AplusB (66.5 - 87.5%) and alpha (62.3 - 86.7%) 

class proteins. Similar trend was followed at super family and at family level. Looking at 

hits that ranked first, beta and AB classes achieved 53.8 – 88.7% and 48.9 – 87.8% of 

success respectively in finding true fold compared to alpha class where only 56.6 – 

77.1% efficiency was reached. Presence of long helical regions in alpha proteins can be 

one of the reasons for more confusion among various folds in alpha class (as illustrated in 

the following discussion). Interestingly, distribution of success rates at three SCOP levels 

very well indicate true hits at fold and super family levels are not only populated by 

family members. These results are on same line as observed in Table 3. Analysis of 

above results indicate PB alignment is able to locate structure similarities even at very 

low sequence similarities (superfamily relationships) and thus our method can be used to 

detect remote homologues for a given protein.  

 

Closer look at the cases of failure where query protein was not able to find its true 

fold, super-family or family within top 10 ranks gave insight to current limitations of 
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structure mining. Presence of single member folds, superfamilies or families in database 

was most common contributor to absence of true hit. In some instances diversity within 

family both at in terms of length and structural features makes it difficult for the global 

alignment algorithm to extract true member. For example, ABC transporter protein from 

Sulfolobus solfataricus (SCOP domain d1oxsc1) from MOP-like super-family (SCOP 

code b.40.6.3) is almost 40 residue longer than rest of the members. In this case GA 

algorithm have to introduce large number of gaps to accommodate shorter proteins from 

the same family resulting in low alignment scores hence low rank. Application of LA 

provides an alternative solution in this case and enabled to extract at least one member 

protein in top hits. Human hyperplastic discs protein (SCOP domain d1i2ta_) from PABC 

(PABP) domain family (SCOP code a.144.1.1) is another such example where LA was 

able to extract true hit among top ranks and GA was unsuccessful. Note should be taken 

that not in all such cases success is achieved by LA approach. For example Haloarcula 

marismortui protein (SCOP domain d1jj2s) from Ribosomal proteins L24p and L21e 

family (SCOP code b.34.5.1) is one such example where both diversity in structural 

features and protein length plays a role in unsuccessful results. Such examples are 

challenging and provide an opportunity to refine and improve our approach.  

 

Furthermore, PB alignment technique had some problems with the pair of proteins 

sharing long stretch of regular secondary structures e.g. long helices in alpha proteins. In 

PB sequence these regions are represented as long stretch of PB m‟s, alignment of such 

regions artificially contributes to the global score and put them in high rank. This 

example is very well illustrated from pairwise alignment of ribosomal protein L12 from 

Thermotoga maritima  (SCOP domain d1dd3a1) and ROP protein from E. Coli (SCOP 

domain d1b6q__), Figure 2. The figure shows good alignment of helical regions 

(sequence of PB m‟s), major reason for having high alignment score. Closer look at 

alignment indicates presence of extra loop in domain d1dd3a1, which is absent in other 

protein. Detection of this extra loop in one protein can hint in the difference in relative 

orientations of helices in two proteins even though the alignment score is high and is 

evident from Figure 2. This example highlights sometimes alignment score can be 

misleading due to the high content of regular structures in two proteins but closer look 



 16 

into PB alignment can give clues to the structural differences. In such cases disadvantage 

of 1D representation can be overcome by having a manual inspection to detect local 

variations present in between regular structures. 

Comparison with existing methods 

Performance of PB-ALIGN has been tested against 13 structure comparison 

methods, Table 6.  We applied batteries of tests to PB-ALIGN to obtain a comprehensive 

comparison with existing methods which included general efficiency of the method to 

extract related proteins, ability to identify difficult structure similarities in database 

search, performance to handle multi-domain proteins and comparison with flexible 

structure alignment method like FATCAT. Evaluation results of existing methods are 

taken from recent studies done by Novotny et al.
3
 and Carpentier et al.

10
 where 12  

structure comparison methods were evaluated. Comparison with flexible structure 

alignment method is based on results produced by Ye et al.
30

 where 10 difficult pair 

alignments are compared between VAST, DALI, CE and FATCAT. Dataset of 61 queries 

to compare general ability to extract related proteins and 2 multi-domain protein queries 

are taken from study done by Novotny et al. We followed same evaluation procedure as 

done by Novotny et al. and Carpentier et al. with one basic difference, both the studies 

followed CATH
6
 classification for test dataset and in our study we have used SCOP

2
 

classification for evaluation procedure. This has been done because PB-ALIGN uses 

database of SCOP domains filtered at 95% identity and many times there are differences 

in both classification schemes. A hit is counted as true hit if it belongs to same SCOP 

super-family or family level. It should be noted that some of the methods involved in this 

comparative study use significance threshold for the scores obtained to discriminate same 

fold from different folds but not all. However, our method is not initially based on the 

definition of a threshold measure and considers top hits in every mining exercise to 

evaluate the relative performance of methods. Nonetheless, measures have been 

developed to assess significance of the alignments (see paragraph cut-off below for 

details). Thus, we applied here similar protocols to Novotny et al that have used few hits 

to compare those methods which did not return the significance of hits
3
. 
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From our initial tests we found out while using complete protein chain as query 

that LA algorithm gives far better results when compared to GA technique. This is 

obvious from the fact that many times protein chains are longer than actual domain 

boundaries and using GA in such cases increases number of gaps in alignment procedure. 

To avoid above pitfalls we have used LA for our analysis. 

 

 Using local alignment we queried each protein chain against the databank and 

complied results simply by counting if true hit is found within top 10 alignments, number 

of members found in top 10 and rank of 1
st
 false positive. Alignments are ranked based 

on score generated by LA algorithm plus normalized and Z scores are also reported for 

each hit. Out of 61 queries we found 2 cases (1rlr and 1vmo) had no superfamily and 

family members in our databank except themselves. In total we tested 59 test cases for 

general efficiency of the method and compared our results with the results reported by 

Carpentier et al., Table 7. Overall PB-ALIGN performed with a success rate of 96.6% 

when top 10 ranking alignments are considered. 

 

 Our method performs correctly in all except two cases. Toxin protein 1ciy (PDB 

id) from Bacillus thuringiensis has three domains namely delta-Endotoxin C terminal, 

middle and N terminal domain. PB-ALIGN is able to extract C terminal and N terminal 

domains very easily in top hits but misses out target middle domain (SCOP code 

b.77.2.1) of 1ciy from initial hits and is found at only 48
th

 rank. Due to low rank in hits 

we have counted this hit as negative in our final results. Second protein 1grj (PDB id) 

from E. Coli has two domains and target domain (GreA transcript cleavage protein, C 

terminal domain, SCOP code d.26.1.1) is present as lone member of family in our 

database. PB-ALIGN is not able to identify target family (single member family) or 

super-family members among top hits. Target super family members are obtained at 12
th

 

and 16
th

 rank if mining is performed with gap penalty of –3.0. Our assessment also found 

out that for only 5 queries out of 59 tested, the rank of first false positive was above the 

rank of true hit and there was not a single case where first true positive was ranked after a 

false hit. Moreover time taken to query each protein was less than a minute, making it 
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one of the fastest and efficient structure comparison method among the 13 methods (see 

Table 7) evaluated in present study.  

Performance of PB-ALIGN on nontrivial dataset 

We further tested our method‟s performance on a non trivial dataset used by 

Carpentier et al.
10

 which is constituted of 14 difficult cases. We queried each protein 

using both LA and GA algorithm against our database and considered first 100 

alignments as well as a cut-off score value of -0.25 for global alignment (see below). 

Results of this exercise are comparable with previously data published by Carpentier et 

al
10

. PB-ALIGN performance was found to be at par with YAKUSA and CE and gave 

about 50% success rate with combined effort of LA and GA algorithm. Testing of both 

LA and GA approach on nontrivial dataset gave very interesting insight of our method. 

LA algorithm was able to get only 4 targets out of 14 tested while GA found total 6 

targets with 3 extra hits from LA results and missing out one case found by LA. Table 8 

gives the summary of results obtained using both the approaches. Application of GA not 

only identified more number of difficult targets but also improved the rank of target in 

two cases (Table 8). When cut-off value (see next section) is applied as a rule for 

decision, GA is able to capture 7 targets above the threshold value. Like YAKUSA, PB-

ALIGN uses local structural features to describe and encode protein backbone and 

identifying distantly related proteins can be difficult due to the fact that such pairs share 

structural similarities at global level rather than local level. Ability of PB-ALIGN to use 

GA algorithm to capture such remote similarities at global level using local descriptors 

(PBs) sets it apart from methods like YAKUSA.  

 

Test case 1crb and 1bge from mainly-  class demonstrate this fact very clearly by 

analyzing global alignment of query (1crb) and target (2gmf) protein PB sequences as 

shown in Figure 3a. Using GA we were able to find target for query protein 1crb among 

top hits with low alignment score. Looking at PB alignment it becomes very obvious why 

local alignment method was not able to capture these global similarities. Both the 

proteins share four helical regions (populated by PBs m) separated by loops and small 

strands (populated by PBs c & d) and two middle helical regions are of different length. 
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Such global similarity can only be captured by GA algorithm having lower gap penalty 

compared to high penalty imposed by LA approach. Use of simple GA algorithm 

combined with PB substitution table highlights subtle similarities identified by PB-

ALIGN method based on local backbone descriptors (PBs). Figure 3b also shows a query 

protein (1bge) for which target protein (2gmf) was not found even after using GA. Close 

inspection of PB alignment reveals four helical regions are well aligned despite the 

differences in helix length. Presence of many gaps to obtain this alignment results in very 

low alignment score which pushed down the pair below the top hits. Another example 

where target (2fox) was found by using GA is query protein 3chy from mainly-  class, 

Figure 3c shows superimposition of 3chy and 2fox from ProFit based on global PB 

alignment. Once again identification of such similarities is not possible by using LA 

techniques due to the presence of variable regions and has to be accommodated by gaps 

in an alignment. The above results show that the possibility to align PB sequences using 

local or global alignment techniques offers flexibility to recognize both strong local 

similarity and distant (variable) global similarities shared by proteins.  

 

Protein 2afn was the only query where LA outperformed GA. Prime reason of GA 

failure can be understood from the fact that query protein chain 2afnA contain multiple 

domains and global alignment against our database will need to introduce large number 

of gaps resulting in low alignment score. Whereas in case of LA algorithm only probe 

and target domains are aligned with high alignment score. These results indicate usage of 

GA algorithm on sequence of PBs (encoding local structure variations) is better suited to 

situations where structural similarities are shared at global level and are difficult to obtain 

with local alignment techniques. In situations, where protein chains are suspected to 

contain multiple domains or one protein structure is completely or partially contained in 

other protein, LA approach proves more advantageous. 

 

Global alignment of few difficult pairs showed at global level that the method was 

able to align equivalent regions in two proteins but due to the low scores such pairs were 

missed altogether by database search approach. We extended above analysis by studying 

pair-wise alignment of tough cases and compared alignment results with flexible 
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alignment method called FATCAT. We selected 10 difficult pairs used by Ye et al and 

compared PB-ALIGN with VAST, DALI, CE and FATCAT based on number of residues 

aligned and superposition rmsd obtained. Table 9 shows number of residues aligned 

along with rmsd values (within brackets) based on GA of PB sequences. Other methods 

are compared based on the results obtained by Ye et al. In our case, superposition of two 

proteins was done using ProFit based on alignment provided by PB-ALIGN and further 

iterations where performed by ProFit to obtain final results. In other words, results 

presented in Table 9 are combined effort of PB-ALIGN and ProFit. To measure the 

contribution of ProFit we also performed another exercise where superposition was 

performed based on sequence alignment generated by ProFit to define initial equivalent 

zones and carried out iteration from there on to get final values.  

 

Results we obtained are very interesting since, ProFit alone by itself gave 

comparable results to FATCAT and PB-ALIGN in 7 out of 10 cases. Remaining 3 pairs 

(1cewI, 1molA; 1cid_,2rhe_; 1crl_,1ede_) gave much improved results when combined 

with PB-ALIGN. This outcome has two implications; first, ProFit by itself is good 

enough superimposition method to superimpose protein pairs sharing low sequence 

similarity and can achieve comparable results to more complex and robust methods; 

second, in the cases where ProFit fails to find optimal results by simple amino acid 

sequence alignment, PB alignment provides good starting points to ProFit, unidentifiable 

by sequence alignment alone. In all ten cases PB-ALIGN coupled with ProFit gave 

desirable results compared to other complex methods. When compared to a flexible 

alignment and superimposition method FATCAT, PB-ALIGN gave low rmsd in most of 

the cases with slightly less number of residues superposed. It is noteworthy that methods 

like FACAT has real advantage in this study where it introduces twists in structures to 

superimpose more residues with low rmsd and despite this advantage our simple 

methodology gave decent results. The only test case (pair 1crl_, 1ede_) where PB-

ALIGN produces significantly lower results compared to FATCAT can be understood 

from the fact that 5 twists were introduced in protein structure to superimpose 269 

residues with a rmsd of 3.55Å. In its present form, though PB-ALIGN will align PB 

sequences in a flexible manner, it is still not capable to produce such results as it relies on 
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rigid body superposition method. Objective of this analysis was not to compete with 

methods like FATCAT (which we believe in principle will give better results specially in 

cases where twists are needed to superpose structures) but it is to highlight, (i) despite 

using very simple approach, PB alignment technique gives comparable results in most of 

the situations with minimum computation time making it practical for large scale analysis 

in real life situations and (ii) premises for flexible structural superimposition as 

performed by FATCAT are featured in the method of PB alignments owing to the nature 

of the algorithm used.  

Handling of multi domain proteins 

PB-ALIGN was also tested on two multi domain proteins, 2src_ and 2hckA  

(human Src and Hck kinase proteins respectively) to assess efficiency of method to 

handle proteins chains containing multiple domains during database search. The database 

used in our case is a collection of domains on SCOP classification, hence it was 

calculated whether the method is able to extract target domains among top hits. As seen 

above, LA technique has advantages over GA algorithm in such cases. Hence, in present 

analysis we used LA algorithm to extract different domains from database. Based on 

SCOP classification, query proteins are composed of three different domains namely SH3 

domain, SH2 domain and protein kinases catalytic subunit. Our evaluation on multi 

domain proteins is slightly different from the earlier studies
3,10

 where success was 

measured if hits contained all the four domains (based on CATH classification) followed 

by proteins having two or one domain. In our study we assessed if all the domains (SH3 

domain, SH2 domain and protein kinases catalytic subunit based on SCOP definition) are 

present among top 100 hits. Previous studies reported YAHUSA, DALI, VAST, 

MATRAS and CE gave best results while handling multi domain cases. SSM found 

proteins having all 4 domains and TOP and DEJAVU found structures sharing more than 

one domain while having a blind eye to single domain structures. LOCK managed to find 

representative of each domain but failed to find proteins having all domains in single 

chain. TOPSCAN, PRIDE and TOPS were among least efficient methods. PB-ALIGN 

was able to find all three target domains among top hits. SH2 and kinases catalytic 

subunit domains where most easily found and were populated among top hits. SH3 
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domain was always found in at lower ranks (61st and 37
th

 rank) and this can be attributed 

to smaller length and high population of other two domains in our database.  

 

Cut-off threshold for PB_ALIGN scores to recognize common folds 

 

On the basis of various assessment exercises described above we worked out a 

recommended threshold for the PB-ALIGN scores that will allow one to designate a hit in 

a structural database as same fold as that of the query. Figure 4 provides a distribution of 

scores of PB-ALIGN for the cases of common fold and different fold (according to 

SCOP). This Figure shows that a region of scores is taken-up by proteins with the same 

fold as well as different fold. As fold space is a continuum it will be difficult to have a 

precise score that will completely segregate same folds from different folds. We hence 

analyzed the variation of sensitivity and specificity for different normalized score 

thresholds (Figure 5). Because we want to typically minimize false positives while 

having an acceptable level of sensitivity (true positives), we propose to select appropriate 

cut off at a stringent specificity value of 0.95. Hence on the basis of the aforementioned 

specificity value, the normalized score cut-off value was -0.250 and the sensitivity, for 

proteins from the same fold was of 0.75. Similarly, for proteins from the same 

superfamily, the score cut-off value was -0.252 and a sensitivity of 0.87. Hence, we 

suggest a threshold value of -0.250 to discriminate between proteins from the same fold 

or same superfamily. This cut-off works correctly for demarcation of same folds or 

superfamily from different folds or superfamily although not for all the cases. Going by 

this argument cut-off, a total of 75% and 87% of the proteins with the same fold and 

superfamily as the query respectively are correctly picked-up by PB-ALIGN. 

Importantly, rate of false hits is only of 5% in both situations. 

 

Understanding whether the observed PB sequence similarity is just a chance event 

is the central problem for the evaluation of the statistical significance of alignment scores. 

The basic question to be answered is: what is the probability that a similarity score as 

great as that actually observed between real sequences could have arisen by chance, when 

sampling from suitably-defined populations of unrelated sequences? In order to address 
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this question,the distribution of global alignment scores from real but unrelated sequences 

for different length subsets (40aa through 400aa by 30aa increment, see also Table 10) 

need to be analyzed. As shown for three examples in Figure 6, alignment scores were 

distributed according to an extreme value distribution (EVD). We hence derived all three 

corresponding EVD parameters (Table 10) which could be used to measure confidence of 

alignment scores to classify two proteins as having the same fold or belonging to same 

superfamily. The scale parameter ( ) linearly decreased with length alignment which 

further comforts the inferred EVD distribution model (Figure 7). 

Conclusion 

In the era of structural genomics, protein structure comparison and mining plays 

an important role in computational biology. Identification of new phylogenic 

relationships, functional annotation and study of sequence to structure relationships are 

some of its most common targets. In this study we have presented a new structure mining 

method called PB-ALIGN, based on the encoding of protein backbone as sequence of 

short local motifs (PBs) and their alignment using a newly derived PB substitution matrix 

and simple dynamic programming. The method is simple and is scalable for large scale 

analysis and provides an ideal choice of structural genomics. Use of local structural 

features (PBs) to describe protein backbone and alignment of such features provides an 

alternative to previously know methods like DALI and CE. Existing methods rely of 

SSEs information for structure alignment and misses out on large amount of structural 

information beside regular structures in proteins. PB representation of protein backbone 

highlights subtle variations and structural conservations present beyond local regular 

structures, e.g. N and C caps of helices and strands. Capability of PB-ALIGN to align 

these regions is a step ahead of existing methods.  

 

The method is highly efficient in mining structurally similar proteins from large 

database at both fold and super-family level. Among peer comparison PB-ALIGN stood 

out as best in both efficiency to find target and speed to mine structures. Ability to obtain 

good efficiency at high speed highlights the simplicity and effectiveness of the method. 

Compared to methods like YAKUSA that also relies on representation of local structural 



 24 

features our method performed superior on general test data and at par on difficult 

(nontrivial) dataset. The main difference between these two methods is the final 

objective. YAKUSA aims to locate strong gap-free local structural similarities or 

“blocks”
10

 between two proteins and is not concerned with global similarities spread over 

protein length. Whereas, PB-ALIGN despite using local structural features aims to 

address both local and global similarity between proteins. Availability of PB substitution 

matrix and use of local or global sequence alignment techniques help to answer both local 

and global structure similarities. Both alignment techniques are shown to be useful in 

different conditions e.g. local alignment is beneficial if one wants to identify strong local 

similarities or if protein chain is multi-domain or if one protein is completely or partially 

included in other structure. Global alignment is useful if two proteins share structural 

similarities spread across protein length. Our experience suggests that user should use 

both local and global alignment feature and manual inspection of PB alignments will 

clearly highlight the best approach. Another advantage we found in PB-ALIGN is 

intuitive nature of PB alignment representing structure alignment and many times simple 

inspection of alignment gives hint about structural differences between proteins prior to 

3D visualization. 

 

Importantly, this study derived a score cut-off, for the inference of structural 

similarity between structural domains whose relationship is unknown using their PB 

representations. It further specified the extreme value distribution of global alignment 

scores of real but unrelated PB sequences. This information is currently being used to 

implement a statistical significance threshold in PB-ALIGN.  

 

Comprehensive assessment of our methodology also highlighted some 

shortcomings and need of further fine-tuning of PB-ALIGN. At present we have used 

simple dynamic programming and linear gap penalty. We believe use of more robust 

flavor of dynamic programming and change in gap penalty will further improve the 

alignment quality. Artificial increase in alignment score due to long stretch of regular 

structures specially in alpha class proteins is also being looked into and change in scoring 

function is anticipated. Furthermore we would like to introduce combined scoring 
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function taking into account number of aligned residues, rmsd value and alignment score. 

We believe that the use of PB alignment methodology to perform multiple alignment of 

family members would enable use to define „core‟ structures having boundaries beyond 

SSEs and would help in finding distant homologues. PB-ALIGN is also expected to be 

useful in homology modeling and loop modeling.  
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Tables  

Table 1. Optimization of global gap penalty. 

 Effect of gap penalty on mining rate at class, fold, super-family and family level for 

global alignment. The results are from top 10 ranking alignments. Analysis was 

performed on 2000 randomly selected SCOP domains.  

Level/Gap penalty -0.5 -1.0 -2.0 -2.5 -3.0 -5.0 

Class 98.1 97.9 97.9 97.95 98.05 97.9 

Fold 66.35 66.55 66.9 66.5 66.25 63.85 

Super family 61.5 61.65 61.65 61.35 61.05 58.7 

Family 55.5 55.95 56.6 56.6 56.2 54.45 
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Table 2. Optimization of local gap penalty.  

Effect of penalty on mining rate at class, fold, super-family and family level. Results are 

from top 10 ranking alignments. Analysis was performed on 2000 randomly selected 

SCOP domains. 

Level/Gap penalty -0.5 -2.0 -3.0 -5.0 -7.0 

Class 89.9 93.3 93.9 94.2 94.25 

Fold 50.55 60.55 62.9 62.75 61.35 

Super family 49.15 58.15 60 60 59.05 

Family 44.45 52.95 54.1 53.95 52.8 
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Table 3. Efficiency rate of mining proteins at various SCOP classification levels. 

Results are reported for top 10 , 5 and 1
st
 ranking alignments. Success rate at fold, super-

family and family level was calculated only for those queries that were correctly 

predicted in class, fold and super-family level respectively. Two situations were 

distinguished ; one where only the query is removed from the database and another where 

the whole family was removed from the database. Values are given as percentage. 

 

Only query domain is 

removed from 

database 

 Whole family related 

to query is removed 

from database 

SCOP level Top10 Top5 Top1 
 

Top10 Top5 Top1 

Class 
99.1 

(7194) 

96.8 

(7028) 

93.1 

(6758) 

 92.5 

(6716) 

88 

(6394) 

76.1 

(5529) 

Fold 
87.4 

(6343) 

85.6 

(6217) 

81.3 

(5906) 

 65.1 

(4727) 

60.8 

(4412) 

53.0 

(3846) 

Super Family 
84.3 

(6122) 

82.8 

(6011) 

79.0 

(5739) 

 62.6 

(4548) 

57.5 

(4178) 

47.4 

(3438) 

Family 
80.0 

(5809) 

78.7 

(5714) 

75.1 

(5453) 

 
n/a n/a n/a 

n/a : not applicable 
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Table 4. Class confusion matrix.  

Matrix gives the efficiency of the method to find true class at first rank and the confusion 

rate between SCOP classes. Results were generated from 7259 X 7259 pairwise PB 

alignments. True classes are featured horizontally and predicted classes vertically. Two 

situations were distinguished within each class ; one where only the query is removed 

from the database (top line) and another where the whole family was removed from the 

database (bottom shadowed line). 

True class vs. hit 

class 
ALPHA BETA AB APLUSB MULTIDOM

* 
MEMBRANE SMALL Total 

ALPHA 

1271 

(95.0%) 
1 12 12 0 35 6 1337 

1120 

(83.7%) 
5 47 53 4 88 20  

BETA 

2 
2005 

(96.5%) 
10 36 0 3 21 2077 

3 
1855 

(89.3%) 
20 120 2 18 59  

AB 

7 8 
1328 

(95.7%) 
39 3 0 2 1387 

31 20 
1163 

(83.8%) 
145 20 3 5  

APLUSB 

34 40 77 
1356 

(88.6%) 
4 3 15 1529 

99 189 301 
863 

(56.4%) 
22 4 50  

MULTIDOM 

3 2 11 2 
70 

(78.6%) 
0 1 89 

6 5 50 9 
18 

(20.2%) 
0 1  

MEMBRANE 

29 6 0 2 0 
102 

(72.8%) 
1 140 

64 17 0 4 0 
53 

(37.8%) 
2  

SMALL 

23 24 3 20 0 1 
629 

(89.8%) 
700 

53 115 5 69 0 1 
457 

(65.3%) 
 

        7259 

*
MULTIDOM corresponds to multi-domain protein class. 
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Table 5. Efficiency rate of mining similar structure proteins with in each SCOP class. 

Efficiency is calculated at three different ranks top 10 hits, top 5 hits and 1
st
 hit. Within 

bracket figures show the total number of queries taken into account or number of true 

hits. E.g. small (700) means in total we did this exercise for 700 proteins domains. 

Efficiency presented is in percentage i.e. true hits/(true hit + false hit). 

 
Only query domain was removed  

from database 

Whole family related to query was removed 

from database 

Alpha (1337) Top10 Top5 Top1 Top10 Top5 Top1 

Fold 86.7 (1160) 84.3 (1128) 77.1 (1031) 69.8 (933) 64.4 (862) 56.6 (757) 

Super family 83.2 (1113) 81.4 (1089) 74.4 (995) 62.3 (833) 56.0 (749) 45.2 (604) 

Family 77.4 (1035) 75.0 (1002) 67.0 (922) n/a n/a n/a 

Beta (2077)       

Fold 93.0 (1931) 91.8 (1907) 88.7 (1842) 71.1 (1478) 66.3 (1378) 53.8 (1118) 

Super family 90.0 (1869) 88.8 (1844) 85.8 (1782) 70.5 (1464) 65.1 (1353) 53.3 (1108) 

Family 87.2 (1812) 86.0 (1786) 83.1 (1726) n/a n/a n/a 

AB (1387)       

Fold 92.2 (1279) 91.2 (1265) 87.8 (1218) 64.9 (901) 58.5 (812) 48.9 (679) 

Super family 90.0 (1248) 89.0 (1234) 86.1 (1195) 63.4 (880) 57.0 (791) 48.8 (678) 

Family 83.3 (1156) 82.6 (1146) 80.0 (1110) n/a n/a n/a 

AplusB (1529)       

Fold 87.5 (1338) 85.7 (1310) 81.9 (1253) 69.8 (1068) 65.0 (995) 59.7 (913) 

Super family 84.3 (1290) 82.6 (1264) 79.2 (1211) 66.5 (1017) 59.9 (916) 51.5 (788) 

Family 79.8 (1220) 78.3 (1198) 74.9 (1145) n/a n/a n/a 

Small (700)       

Fold 89.4(626) 85.8 (601) 73.8 (517) 66.7 (467) 61.7 (432) 47.1 (330) 

Super family 84.7 (593) 80.8 (566) 70.6 (494) 61.5 (431) 58.2 (408) 49.0 (343) 

Family 79.4 (556) 76.8 (538) 66.4 (465) n/a n/a n/a 

MultiDo (89)       

Fold 86.5 (77) 86.5 (77) 85.3 (76) 66.3 (59) 66.3 (59) 64.0 (57) 

Super family 86.5 (77) 86.5 (77) 86.5 (76) 66.3 (59) 66.3 (59) 64.0 (57) 

Family 76.4 (68) 76.4 (68)    76.4 (68) n/a n/a n/a 

Membrane (140)       

Fold 90.7 (127) 87.8 (123) 80 (112) 88.5 (124) 88.5 (124) 85.7 (120) 

Super family 75.7 (106) 73.5 (103) 69.3 (97) 87.8 (123) 85.0 (119) 67.8 (95) 

Family 73.5 (103) 71.4 (100) 67.8 (95) n/a n/a n/a 

n/a : not applicable 
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Table 6. Structure mining/comparison methods tested in the present study.  

Program URL Methodology used 

CE http://cl.sdsc.edu/ce.html Inter residue distances 

DALI http://www.ebi.ac.uk/dali C  distance matrices 

DEJAVU http://xray.bmc.uu.se/usf/dejavu.html SSEs comparison 

FATCAT http://fatcat.ljcrf.edu/  RMSD and introduction of twists 

LOCK http://brutlag.stanford.edu/lock2 RMSD minimization 

MATRAS http://biunit.aist-nara.ac.jp/matras Markov transition model 

PB-ALIGN http://bioinformatics.univ-reunion.fr/PBE/PBE-ALIGN.htm PBs substitution matrix & 

alignment. 

PRIDE http://hydra.icgeb.trieste.it/pride C distance distribution. 

SSM http://www.ebi.ac.uk/msd-srv/ssm SSEs vector comparison  

TOP
*
 http://bioinfol.mbfys.lu.se/top SSEs alignments 

TOPS
*  SSEs symbolic representation and 

comparison 

TOPSCAN http://www.bioinf.org.uk/topscan SSE representation in topology 

strings, aligned through a global 

dynamic alignment algorithm 

VAST http://www.ncbi.nlm.nih.gov/Structure/VAST/vastsearch.html SSEs graph representation  

YAKUSA http://www.rpbs.jussieu.fr/yakusa Internal coordinates matching 

 
*
Web link unreachable. 
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Table 7. Comparison of PB-ALIGN with existing structure mining/comparison methods. 

Comparison of PB-ALIGN with 12 structure mining/comparison methods based 

on results from Carpentier et al.
10

. The numbers along with the header gives total number 

of queries belonging to each class.  All the hits are counted based on first 10 ranking 

alignments compared to 100 hits taken by Carpentier et al, only for those methods which 

did not return the significance of hits. 

Program Mainly a (19) Mainly b (19) Mixed ab (15) Few SSEs (8) 

Total 

(%) 

PB-ALIGN 
18

+
 17

*
 14 8 96.6 

YAKUSA 17 19 14 8 95 

CE 17 19 13 8 93 

DALI 14 
19 14 

8 90 

MATRAS 

 

11 

 

19 

 

14 

 

8 

 

85 

 

VAST 

 

12 

 

17 

 

15 

 

7 

 

84 

 

TOP 

 

14 

 

18 

 

12 

 

7 

 

84 

 

DEJAVU 

 

14 

 

19 

 

9 

 

4 

 

75 

 

TOPSCAN 

 

15 

 

12 

 

9 

 

7 

 

70 

 

TOPS 

 

2 

 

15 

 

14 

 

7 

 

62 

 

PRIDE 

 

14 

 

14 

 

7 

 

3 

 

62 

 

LOCK 

 

0 

 

14 

 

11 

 

8 

 

54 

 

SSM 

 

5 

 

13 

 

10 

 

5 

 

54 

 
 
+
 One query has no target in our database. 

*
 For mainly b class, query protein 1vmo has no target in our 

database and query 1ciy misses target in top ten ranks. 
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Table 8. Performance of local and global alignment algorithm on nontrivial dataset. 

In total both methods where able to find 7 target proteins. Success and failure of GA and 

LA is indicated by 0 (failure) and 1 (success). Here, target rank is indicated within 

parenthesis.  Success of GA based on the application of a cut-off value of -0.25 is also 

indicated by 0 if score < -0.25 (failure) and 1 if score > -0.25 (success). Between 

parenthesis are indicated the normalized alignment score (see text for details). 

Query protein Target protein Local alignment Global alignment 
Cut-off value on 

GA alignment 

1aep 256b:A 0 0 0 (-0.29) 

2mta:C 1ycc 0 0 0 (-0.74) 

1rcb 2gmf:A 0 1 (48)
+ 1 (+0.02) 

1bge:B 2gmf:A 0 0 0 (-0.34) 

2afn:A 1aoz:A 1 (10)
* 

0 0 (-0.48) 

3hla:B 2rhe 0 0 1 (+0.23) 

2aza:a 1paz 0 0 0 (-0.29) 

1cew:I 1mol:A 0 1 (59)
+ 1 (-0.06) 

1dsb 2trx:A 0 0 0 (-0.68) 

1fxi:A 1ubq 1 (42) 1 (28)
# 1 (+0.26) 

3chy 2fox 0 1 (33)
+ 1 (+0.18) 

1gpl 2trx:A 0 0 0 (-1.94) 

1hip 2hip:A 1 (6) 1 (7) 1 (+0.56) 

1isu:A 2hip:A 1 (59) 1 (15)
# 1 (+0.14) 

 
+
 Target exclusively found by GA. 

#
 Improvement in rank using GA. *Target protein missed by GA. 
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Table 9. Comparison of PB-ALIGN and FATCAT.  

Comparison of various methods based on number of residues aligned and rmsd (within 

brackets) obtained for 10 difficult examples based on global alignment. Results for other 

methods is taken from Ye et al.
30

  

Protein1 Protein2 VAST DALI CE FACAT PBALIGN ProFit 

1fxiA 1ubq_  48(2.1) 60(2.6)
+
 64 (3.8)

+
 63(3.01) 59(2.6) 55(2.0) 

1ten_ 3hhrB 78(1.6) 86(1.9) 87 (1.9) 87(1.9) 82(4.1) 84(4.0) 

3hlaB 2rhe_ - 63(2.5) 85(3.5) 79(2.81)
*
 67(2.4) 73(2.6) 

2azaA 1paz_ 74(2.2) 81(2.5)
+
 85(2.9) 87(3.01) 79(2.3) 79(1.9) 

1cewI 1molA 71(1.9) 81(2.3) 69(1.9) 83(2.44) 74(2.5) 16(2.5) 

1cid_ 2rhe_ 85(2.2) 95(3.3) 94(2.7) 100(3.11) 87(2.2) 25(2.9) 

1crl_ 1ede_ - 211(3.4) 187(3.2) 269(3.55)
*
 

179(2.3) 75(2.9) 

2sim_ 1nsbA 284(3.8) 286 (3.8) 264(3.0) 286(3.07) 262(2.4) 264(2.4) 

1bgeB 2gmfA 74(2.5) 98(3.5) 94(4.1) 100(3.19) 90(2.4) 88(2.4) 

1tie_ 4fgf_ 82 (1.7) 108 (2.0) 116(2.9) 117(3.05) 105(2.2) 104(2.1) 

 
*
 FATCAT introduced twists in structures to perform superposition. 

+
 No results obtained in previous study 

done by Ye et al. 
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Table 10. Estimates of extreme value distribution parameters for alignment scores 

between real but unrelated sequences of different sequence length subsets (see also figure 

8). These parameters were derived using gev function in evir package implemented in R 

statistical software
51

. 

 

Length 

(number of 

residues) 
Shape parameter ( ) Scale parameter ( ) Location parameter (µ) 

40 0.376 0.673 0.993 

70 0.359 0.539 0.831 

100 0.368 0.506 0.774 

130 0.349 0.418 0.685 

160 0.397 0.353 0.621 

190 0.406 0.384 0.644 

220 0.416 0.354 0.599 

250 0.424 0.358 0.535 

280 0.444 0.337 0.480 

310 0.402 0.261 0.519 

340 0.435 0.278 0.540 

370 0.456 0.262 0.520 

400 0.477 0.242 0.499 
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Figures  

 
 

Figure 1. Effect of gap penalty on (a) global alignment and (b) local alignment.  

Figure gives the mean improvement (decrease) in rmsd value (Y axis) at different 

negative gap penalties (X axis) with respect to rmsd values at gap penalty of –0.5. As 

shown, with increase in negative penalty there is an improvement in superimposed rmsd 

values compared to values obtained at penalty of –0.5. In case of local alignment (b), 

there is large improvement in alignment quality as negative gap penalty is increased. 

Even though –7.0 gives better mean improvement in rmsd, -5.0 was chosen as desired 

penalty as a balance between alignment quality and mining efficiency. 
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Figure 2. PB alignment based superimposition of SCOP domain d1dd3a1 (green) and 

d1b6q__ (blue).   

PB alignment illustrates how long successions of PB m can contribute to alignment score. 

Presence of extra loop in protein 1DD3 is indicated in red color. It shows how small 

variation at local level can bring change in orientation of regular structures. Structural 

alphabet notation is explained in de Brevern et al
37,38

. 

d1dd3a1#A ZZKLMMMMMMMPCFKLMMMMMMMMMMMNOPKLMMMMMMMMMMMMMMMMMMMMMNOZZ

d1b6q__#_ ZZKLMMMMMMMMMMMMMMMMMMMMMMMPCFKLMMMMMMMMMMMMMMMMMMMMMM-ZZ

d1dd3a1#A ZZKLMMMMMMMPCFKLMMMMMMMMMMMNOPKLMMMMMMMMMMMMMMMMMMMMMNOZZ

d1b6q__#_ ZZKLMMMMMMMMMMMMMMMMMMMMMMMPCFKLMMMMMMMMMMMMMMMMMMMMMM-ZZ



 38 

 

 

 

Figure 3. Global alignment of PB sequences. 

(a) PB sequence alignment and superimposed structures for protein pair 1crb and 2gmfA. 

Target protein 2gmfA is found after using GA. (b) PB sequence alignment and 

superimposed structures for protein pair 1bgeB and 2gmfA. GA fails to find target 

protein 2gmfA. (c) Superimposed structures of 3chy and 2fox based on GA of PB 

sequences. Structural alphabet notation is explained in de Brevern et al
37,38

. 



 39 

  
 

 

Figure 4. Distribution of normalized scores after PBs alignment between pairs of proteins 

from the same fold or superfamily (top) and from different folds or superfamilies 

(bottom). 
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Figure 5. Analysis of variation of sensitivity and specificity according to different cut-off 

scores. 
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Figure 6. Distribution of scores from global alignments of real but unrelated sequences 

(RUS) datasets of 40aa, 190aa and 400aa long. The distribution of the scores was 

estimated with extreme value distribution curve indicated in solid line using evir package 

from R statistical software
51

. On the right are displayed the corresponding quantile plots
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Figure 7. Variation of estimates of EVD scale parameter ( ) with length of protein 

sequences calculated from global alignments of real but unrelated sequences (RUS) 

datasets (see Table 11). Fitted regression line with R
2
=0.85 (p<0.0001) as shown in solid 

line was calculated using lm function from R statistical software
51

. 
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