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Abstract 

 

We present a thorough analysis of the relation between amino acid sequence and local 

three-dimensional structure in proteins. A library of overlapping local structural prototypes 

was built using an unsupervised clustering approach called "Hybrid Protein Model" (HPM). 

The HPM carries out a multiple structural alignment of local folds from a non-redundant 

protein structure databank encoded into a structural alphabet composed of 16 Protein Blocks 

(PBs). Following previous research focusing on the HPM protocol, we have considered gaps 

in the local structure prototype. This methodology allow the have variable length fragments. 

Hence, 120 local structure prototypes were obtained. 25% of the protein fragments learnt by 

HPM had gaps.  

An investigation of tight turns suggested that they are mainly derived from three PB series 

with precise locations in the HPM. The amino acid information content of the whole 

conformational classes was tackled by multivariate methods, e.g., canonical correlation 

analysis. It points out the presence of seven amino acid equivalence classes showing high 

propensities for preferential local structures. In the same way, definition of “contrast factors” 

based on sequence-structure properties underline the specificity of certain structural 

prototypes, e.g., the dependence of Gly or Asn-rich turns to a limited number of PBs, or, the 

opposition between Pro-rich coils to those enriched in Ser, Thr, Asn and Glu. These results 

are so useful to analyze the sequence – structure relationships, but could also be used to 

improve fragment-based method for protein structure prediction from sequence.  
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1. Introduction 

Knowledge of protein three-dimensional (3D) structures of contributes to understand their 

biological functions (Baker and Sali, 2001). Predicting protein structures from amino acid 

sequences constitutes a major scientific challenge when both X-ray crystallography and 

nuclear magnetic resonance analysis are difficult to undertake. Prediction methods are based 

on the fact that the amino acid sequence of a protein specifies its 3D structure. Different 

approaches are currently used to predict global protein structures: (i) comparative modeling is 

carried out when the target sequence shares a good sequence similarity with proteins of 

known 3D structures (Sali and Blundell, 1993), (ii) threading approach is used when the 

template structure is hard to find due to a low sequence similarity. It searches for the best 

compatibility between the target sequence and known protein folds (Xu et al., 2001), (iii) ab 

initio methods are attempted for proteins without enough sequence similarity to any protein 

whose structure is available while de novo methods combine them all (Bonneau et al., 2002). 

To circumvent the complex problems of global protein structure prediction, several 

research groups have focused on local structure prediction. To this end, they have developed 

fragment-based approaches (Bystroff and Baker, 1998; Haspel et al., 2003). These approaches 

rely on the hypothesis that the protein folding can be represented as a hierarchical process, 

which initiates locally (Lesk and Rose, 1981). This hierarchical concept implies that protein 

local structural information is largely contained in local amino acid sequences, independent 

on long-range interactions. Then, the global structure can be modeled by combination of local 

fragments with different refinements (Inbar et al., 2003). 

Classical secondary structure description leaves 45% of protein structure not described, 

i.e., coil regions. In an attempt to describe the local structural characteristics in a more 

accurate and comprehensive way, many research groups have designed local structural 

alphabets, e.g., (Sander et al., 2006; Unger et al., 1989). They correspond to sets of structural 
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prototypes able to approximate protein 3D structures (Offmann et al., 2007).  

We have developed a such structural alphabet (de Brevern, 2005; de Brevern et al., 2000); 

it reduces the protein 3D complexity into one-dimensional string of characters. Based on this 

description, the local structure descriptions was extended to longer fragments, using an 

unsupervised clustering method called "Hybrid Protein Model" (HPM, (de Brevern and 

Hazout, 2001; de Brevern and Hazout, 2003)). The HPM topology is a neural network 

represented by a ring of neurons. Each neuron corresponds to a conformational class of the 

library grouping structurally similar fragments defined by our structural alphabet. The HPM 

procedure builds structurally dependent consecutive classes because the successive neurons of 

the ring share common overlapping information. The HPM shares with Self-Organizing Maps 

(Kohonen, 2001) the concept of self-organization to carry out the classification of the data. 

But for the HPM, the information diffusion is implicitly operated thanks to the overlapping 

between the consecutive neurons. The HPM represents a "structural profile" (Gribskov et al., 

1987), resulting from the multiple local alignment of the PB encoded structural fragments. 

Related approaches are summarized in (Gonzalez-Diaz et al., 2008), and examples can be 

found in (Gonzalez-Diaz et al., 2007; Munteanu et al., 2008). 

In the present study, we have defined a new HPM by allowing gaps in the protein 

structural fragments during the training. This procedure yields to increase the library 

specificity in terms of sequence-structure relationship. In addition, we carried out a 

characterization of the most frequent secondary structures found in the loops, i.e., the tight 

turns, in terms of location in the HPM and PB signatures. 

In the second step, we extracted information on protein sequence – structure relationship 

from the library of conformational classes. Different analyses were performed by using 

multivariate methods such as hierarchical clustering and canonical correlation analysis 

(Hotelling, 1936): (i) to identify of sequence preferences for each structural class, (ii) to 
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determine amino acid equivalence classes, so highlighting the global sequence – structure 

dependence and, (iii) to extract “contrast factors” opposing certain structural prototype 

subsets according to their sequence – local structure dependence. 

 

2. Materials and Methods 

2.1- Non-redundant databanks of 3D protein structures 

Two databanks were used in our study, set 1 including 675 non-redundant protein 

structures extracted from the Protein Data Bank (Berman et al., 2000), and set 2 ,a recent set, 

including 1143 non-redundant protein structures. These structures, selected from the PDB-

REPRDB database (Noguchi and Akiyama, 2003), had 2 Å or better resolution. They 

presented less than 30% of sequence identity and a minimal root mean square deviation 

(rmsd) of 10 Å after pairwise superimposition. Each structure of the databanks was encoded 

into our structural alphabet. This latter is composed of a set of 16 structural prototypes called 

Protein Blocks (PBs, see Figure 1) able to approximate locally protein 3D structures. The 16 

PBs can approximate locally the protein backbone with a high precision (rmsd < 0.42 Å) (de 

Brevern, 2005).They are labeled by letters from a to p. Each PB of 5 consecutive residues is 

defined by 8 dihedral angles (φ and ψ). Hence, protein 3D structures are encoded in a string of 

characters (i.e., the PBs), the coding principle being based on root mean square deviation on 

angular values (Schuchhardt et al., 1996). Each protein 3D structure of the non-redundant 

databank, a string of PBs, was cut into overlapping fragments of L successive PBs. In our 

study, L = 2w+1, with w = 3, i.e., fragments of 7 PBs. A fragment of L+4 amino acids is 

associated to each structural fragment and is defined from -w-2 to +w+2 (in our study, L+4 = 

11). 
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2.2- A strategy for building a library of structural prototypes: “Hybrid Protein Model” 

The “Hybrid Protein Model” (HPM) is an unsupervised clustering method. It performs the 

compression of the structural information by establishing a library of overlapping structural 

prototypes (de Brevern and Hazout, 2000). The library of structural motifs is established 

during a training phase. The training was carried out with three quarters of the set 1 (105,340 

fragments). The validation step was performed on the left quarter of set 1 (34,163 fragments) 

and its stability was confirmed with set 2 (277,618 fragments). 

 

2.2.1- Training of the Hybrid Protein Model 

The principle of the training is described in Figure 2. The HPM is a ring of neurons, i.e., a 

closed linear neural network with connected extremities (Fig. 2a). The HPM can be 

considered as a probabilistic protein composed of N sites. Each site s is defined by a law of 

probability Fs(PB), corresponding to the distribution of the B PBs composing the structural 

alphabet (in our study, B = 16). The HPM corresponds to a matrix of dimension N x B (Fig. 

2b). A structural class, i.e., a neuron clusters fragments sharing similar local structure. It is 

defined by L successive laws of probability (in our study, L = 7). Two successive structural 

classes are overlapping since they share (L-1) sites. Thus, the successive neurons are 

dependent and share common information. The training includes two distinct steps: an 

identification phase and a local enrichment phase.  

 

(i) The identification phase: Each structural fragment of L successive PBs is taken randomly 

in the training set. The most similar pattern present in the HPM is searched (Fig. 2c). This 

score is a logarithm of likelihood ratio, and, measures the adequacy of a structural fragment 

with a given neuron (i.e., L successive laws of probability). The expression of the score Sc(s) 

at a given HPM site s (s varying from 1 to N) is: 
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xPB  corresponds to the Protein Block located in position X in the structural fragment, X 

varying from -w to +w. )( xXs PBF +  is the frequency of xPB  in position (s+X) in the HPM. 

)( xR PBF  is the reference frequency of xPB , i.e., its observed frequency in the databank. The 

identification phase consists in selecting the position sopt, the position with the maximum 

score ( )[ ]sScS maxargmax = . No other position has a better adequacy for the presented 

fragment. 

 

(ii) The local enrichment phase: This phase consists in slightly modifying the PB distributions 

of the structural class corresponding to the site sopt, in order to increase the likeness between 

the PBs distribution of site sopt and the presented fragment (Fig. 1d). The enrichment 

procedure is applied to the L PB distributions for the sites from (sopt-w) to (sopt+w). It is 

carried out as follows:  
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Xsopt        elsewhere (the 15 other PBs). 

at position (sopt+x), x varying from -w to +w. The symbol ← specifies “is changed into”. 

These equations allow one to increase the frequencies of the fragment protein block PBx in 

the sites of the HPM located from sopt-w to sopt+w, and to reduce the frequencies of the other 

PBs (a fortiori not observed). Moreover, this transformation ensures to keep the frequency 

values within the range [0, +1] and the sum of frequencies equal to 1. 

The parameter α is the training coefficient. Initially fixed at a value α0 (e.g. 0.20), it 

decreases during the training according to the following equation:  
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where t denotes the number of fragments already presented to the HPM and T the total 

number of fragments in the training databank. As the training is iterative, several cycles are 

necessary to obtain a stabilization of the PB distribution laws. Different parameters implicated 

in the quality of the training are developed in supplementary data 1. 

 

2.2.2- Improvements of the HPM training 

Gaps were introduced into strings of PB sequences describing structural fragments. This 

strategy leads to the definition of a multiple structural alignment with gaps. So, it permits to 

take into account variable length fragment instead of only fixed length (L). The rules added in 

the training are expressed as: (i) gaps are introduced at one position of the structural fragment, 

and their length can vary from 1 to 5, and (ii) a cutoff G is fixed to select only the significant 

gaps. The gap is considered to be significant when the optimal score of the fragment with gap 

is G (=4) times higher than the maximal score obtained for the fragment without gap. To 

check the relevance of the introduction of gaps in the structural fragments, we assessed the 

variations of the PB and sequence information contents between the Hybrid Protein Models 

built with or without gaps. To insure a continuity of the successive local prototypes, and also 

diminish the influence of weakly represented structural fragments, dedicated parameters have 

been also optimized (see supplementary data 2). 

 

2.3- Characterization of the Hybrid Protein Model in terms of local structure 

The PBs specificity at each HPM site s was quantified by an entropy-derived measure Neq, 

i.e., “equivalent number of PBs”. Its expression is the exponential of Shannon entropy H(s) 

(Shannon, 1948). 
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where Fs(x) denotes the frequency of the Protein Block x located in position s of the HPM 

(B=16 for our structural alphabet). The Neq value measures the average number of of PBs per 

site. It varies between 1 PB (i.e., only one PB is observed) and 16 PBs (i.e., the 16 PBs are 

evenly distributed). Therefore, a low Neq value means a highly determined site. 

 

2.4- Global analysis of the sequence-structure relationship 

2.4.1- Amino acid propensities along the HPM sites  

We analyzed the distribution of the amino acids located in the central position of the 

fragments to point out amino acid propensities along the HPM sites. We computed an amino 

acid occurrence matrix of dimension N x 20 (with N = 120), which gives for each structural 

class the amino acid distribution of the central residue. These occurrences were then 

normalized into Z-scores as follows: 
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For an amino acid j in HPM position s, ns(j) denotes its observed occurrence, fR(j) its 

reference frequency (i.e., the frequency observed in the databank), and Ns the number of 

fragments associated to the site s. Thus, the term sR Njf ).(  corresponds to the expected 

occurrence of the amino acid j at the site s. To measure the sequence informativity of a HPM 

site s, we determined which amino acids were over- and under-represented. A threshold was 

fixed at 2.57 (absolute value for a risk of 1%). Thus, Z-scores greater than 2.57 (respectively 

lower than –2.57) correspond to amino acid over-represented (respectively under-

represented). Implicitly, we assume that the number of occurrences follows a Poissonian law 

that can be approximated by a normal distribution. 
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2.4.1-Amino acid informativity along the HPM sites:  

The Kullback-Leibler asymmetric divergence measure (KLd), or relative entropy, makes it 

possible to analyze the amino acid informativity of the central residue in each structural class 

(Kullback and Leibler, 1951). The KLd values were computed along the N sites: 
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)( jfs  denotes the frequency of the amino acid j for a given HPM site s, and )( jfR  is the 

reference frequency of the amino acid j in the databank. The relative entropy KLd(s) measures 

the divergence between the amino acid distributions sf  and Rf . The higher the relative 

entropy is, the more informative the site is, in terms of amino acid. 

 

2.5- Extraction of sequence - structure dependencies common to prototype subsets 

The purpose of canonical correlation is to extract series of pairs of correlated factors (i.e., 

linear combination of variables) between two sets of variables. A linear combination of a set 

of original variables is called a canonical variable. The objective of the analysis is to find (if it 

exists) the relationship between distribution of amino acid and prototypes. In our study, the 

variable sets are those describing on the one hand, the local structure (Z-scores of the 16 PBs: 

Z's(b)) and on the other hand, the amino acid sequence (Z-scores of the 20 amino acids: Zs(a)) 

associated to the N structural classes of the HPM. The canonical correlation analysis aims at 

finding the maximal correlation between a linear combination of the first set of variables and 

a linear combination of the second set of variables. The canonical scores are the values of the 

two canonical variables for a given HPM site s. 
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where Fk(s) and Gk(s) correspond to the k-th pair of correlated linear combinations in the site 

s for the amino acids and the PB series, respectively. 

In the canonical correlation analysis, the coefficients αk(a) and βk(b) are determined by 

setting a maximal correlation between Fk and Gk, and an independence with the factors 

previously defined (a rank less than k). The correlation between Fk(s) and Gk(s) is the k-th 

canonical correlation, i.e.,Rk = corr(Fk, Gk). The percent of explained variance is given by the 

value of the canonical correlation squared, R 2
k . 

A canonical factor loading is the correlation of a canonical variable with an original 

variable, i.e., corr(Fk(s), Zs(a)) or corr(Gk(s), Z's(b)). We computed the canonical factor 

loadings in order to interpret the meaning of the canonical variables relative to the original 

variables. For each structural classes, the loadings specify the significance of each PB and 

each amino acid kind. They are significant if they are greater than an empirical cutoff fixed at 

0.3. We computed also the canonical communality coefficient which corresponds to the sum 

of the squared canonical factor loadings for a given variable. It measures how much of a given 

original variable's variance is reproducible from the canonical variables. The maximum 

number of canonical correlations between two sets of variables is limited to the number of 

variables for the smallest set, i.e.,16 here. R package was used (Ihaka and Gentleman, 1996). 

 

3. Results 

3.1- Library of overlapping structural motifs 

The library characterized by the final HPM is composed of 120 overlapping structural 

classes. Each class includes fragments sharing similar local structures encoded into PBs 

(fragments of 7 successive PBs corresponding to 11 amino acids). These classes are 

representative of the protein local folds observed in the databank. 94.2% of the fragments 
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from the training set were involved in the HPM training, i.e., 99,214 structural fragments. The 

remaining was discarded due to their low log odds scores (see supplementary data 2). They 

represent the less frequent series of PBs. 

Analysis of the final HPM enables to locate regions of regular secondary structure and 

their preferential transitions. Figure 3a shows the matrix of PB distributions with gray levels 

proportional to PB frequencies. The Hybrid Protein Model described here allows the 

characterization of structural prototypes representative of the local protein fragments observed 

in the databank. Each structural class of the library is composed of structurally similar 

fragments. So each class can be represented by the protein fragment structure, defined as 

structural prototype, the closest to the average local fold. Figure 4 (and supplementary data 3) 

shows one third of the structural prototypes of the library (Humphrey et al., 1996). The 

overlap insures a structural continuity rate between the successive structural classes, it reaches 

70%. Moreover, the rmsd values computed along the HPM for each prototype indicate a high 

structural stability. The average rmsd value of 1.94 Å is rather small for fragments of 11 

amino acids. The clusters obtained are globally homogeneous since the rmsd values vary 

within the range [0.38Å; 3.31Å]. The lowest value is obtained for the site #26 associated to a 

long α-helix and the maximal value for the site #52 corresponding to a region weakly 

structured.  

The analysis of the HPM according to the three states secondary structure assigned by 

STRIDE (Frishman and Argos, 1995), shows that the PBs m and d approximate with accuracy 

α-helices and β-strands respectively, and that the variability of the coil state is globally taken 

into account by the other PBs. Three types of α-helix characterized by series of PB m and 

variable in length (from 4 to 9 PBs) are distinguishable. They are located in the regions [21-

29], [41-45], [67-70] and are labeled α1, α2 and α3, respectively. Different types of β-strand 

(from 3 to 7 PBs long) characterized by series of PB d are distinguishable with a strong PB 
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signature. Some of the β-strands are well delimited, i.e., those located in the regions [7-13], 

[35-37], [94-100], while others are located in fuzzier regions, e.g., [58-61], [80-82], [107-109] 

and [116-117]. The different β-strands are labeled from β1 to β7 along the HPM. The 

introduction of PB c in series of PB d leads to distorted β-strands. Preferential transitions 

between these regular structural regions are observed. As an illustration, the PB series fkl 

(region [37-40]) defines a transition between a β-strand and an α-helix, the PB series nopa 

(sites [29-33]) characterizes a loop linking an α-helix to a β-strand, and the series ehia (sites 

[102-105]) a transition between two β-strands. Some regions of the HPM are fuzzier, e.g., 

[47-56], [89-92], [111-120]. They correspond to what is generally considered as coil regions.  

 

3.2- Introducing gaps improves the structural prototype library 

Figure 3b shows the number of fragments associated to the different HPM structural 

classes. The structural fragments are evenly distributed along the HPM except for regular 

secondary structure regions (black bars in Fig. 3b). The α-helix region extending between 

sites 21 and 29 contains a high number of structural fragments mainly centered at site #24 

(13,790 fragments). The lowest numbers of fragments are associated to coil regions, with site 

the least populated (86 fragments) for the site #16. Moreover, the values of the adequacy 

scores, measuring the divergence between the probability of observing a given fragment in a 

HPM region, and, the probability of observing this fragment in the databank, are quite 

significant. They thus testify of the quality of the training, and a fortiori certify the correct 

representativeness of our prototype library. 

To analyze the relevance of introducing gaps in some structural fragments, we compared 

this HPM with an HPM for which the training was carried out without introduction of gaps 

(103,542 fragments, i.e., 98.3% of set 1 was used). 

The entropy-derived diversity measure Neq (Etchebest et al., 2005; Hazout, 2007), i.e., the 
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equivalent number of PBs, permits to characterize the structural specificity of each HPM site. 

Figure 3c shows the improvement of this specificity along the HPM sites. The average Neq 

value for the HPM without gaps is equal to 3.06 compared to 2.19 for the HPM with gaps. 

The maximal value is strikingly decreased, i.e., 6.6 for the HPM with gaps compared to a 

value twice higher for the no gap HPM. In some HPM coil regions, the Neq gain is high such 

as the zones [44-54] and [79-89], for which the mean Neq value drops from 5.0 to 2.9 and 

from 4.9 to 2.5, respectively. In the final HPM with gaps, 90% (respectively 58%) of the sites 

have a Neq value less than 4 (respectively 2) equivalent PBs. These sites highly specific are 

mainly located in regions of α-helix and β-strand. The Neq values increase for the less 

determined HPM regions, this is the case of certain coil regions, e.g., the maximum value, 6.6, 

is observed at the site #114. 

The introduction of gaps concerned 25% of the fragments used for the training (i.e., 24,837 

fragments, white bars in Fig. 3b). Thus, a quarter of the structural fragments used the 

possibility to adapt their length. As an illustration, Figure 5 shows fragments with and without 

gaps associated to the same site #27. The α-helix region ranging between sites 21 to 29 is 

essentially characterized at the C-terminal extremity by the PB series nopa. Introducing gaps 

enables to point out another type of α-helix C-cap encoded by less frequent PB series pcc. In 

this site, 13.9% of the structural fragments have gaps. Interestingly, a combination of these 

two different C-caps can lead to a longer loop, e.g., nopcc. Hence, long loops may be 

combinations of short PB series. The proportions of fragments with gaps of length 1, 2, 3, 4 

and 5 are 17.7%, 15.3%, 16.6%, 23.7% and 26.7%, respectively. The presence of a gap in a 

fragment can be explained by (i) a short repetitive secondary structures (see Fig. 5), (ii) an 

extremity of a regular structure less frequent, as previously described, or (iii) a high variable 

structure. We can distinguish along the HPM regions with less or more gaps (white bars in 

Fig. 3b). The site #24, for instance, has only 0.3% of fragments with gaps because they are 
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included in a long regular α-helix (i.e., PB series with more than 7 PB m), whereas the site 

#26 have 95.8% of fragments with gaps, as most of them being α-helices showing a large 

variation in length but characterized by the same C-cap.  

 

3.3. Characterization of specific structural motifs: turns and prototypes 

3.3.1- Eight major HPM regions corresponding to turns are highlighted 

Turns are known to induce a polypeptide chain reversal. We considered that a fragment of 

L = 7 PBs associated to if this latter was centered in the fragment. We focused our attention 

on structural prototypes that can be associated to γ-turns, β-turns and α-turns (Bornot and de 

Brevern, 2006; Fuchs et al., 2007; Hutchinson and Thornton, 1996; Pavone et al., 1996; Rose 

et al., 1985). Table I provides the three main locations of the motifs of interest in the HPM. 

The different turn types are grouped in 8 main zones of the HPM. They are labeled from T1 to 

T8 with sub-regions specified by letters from a to g (see Table I and caption). They 

correspond to 50 sites of the HPM. These varying in length HPM zones are well defined, with 

a mean Neq value varying within the range [1.2; 5.3]. These turn zones from T1 to T8 

correspond to the HPM sites [29-33], [38-41], [45-55], [63-67], [83-91], [101-108], [110-114] 

and [117-5] (as HPM is closed), respectively. They characterize with gradual specificity 

transitions between regular secondary structures (α-helix and β-strand). T3 corresponds to the 

largest turn zone. It appears from this analysis that only two HPM regions linking regular 

secondary structures are not associated to turns, i.e., [14-20] and [71-77]. These two regions 

are poorly populated.  

 

3.3.2- Most of the different turn types have accurate locations in the Hybrid Protein Model 

This analysis shows clearly that the turns are globally well delineated in the HPM. For each 

type of turn, more than 50% are found in only three HPM zones. As an illustration, 49.8% of 
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the β type I turns, 66.3% of the β type II turns, 95.5% of the α II-LU turns are identified when 

considering only their three most populated HPM zones. Only the inverse γ-turns and the β 

type VIII turns have not precise locations and constitute a miscellaneous category compared 

to the β type IV turns. These results are interesting. Indeed, the HPM was not constructed to 

discriminate the different turn types, but to learn a complete protein structure databank. 

Nevertheless, the HPM enables to analyze turns in their environment. Furthermore, different 

turn types present similar PB signatures, and hence are found in the same HPM regions. Turns 

share a few number of distinct signatures (see supplementary data 4), with mainly three 

common patterns (nopa, ehia and fklm). Most of the other motifs mainly derived from these 

patterns by deletion, insertion or substitution of PBs. In the same way, HPM underlines a 

possible formation of multiple turns involving β- and α turns. 

 

3.4.- Global analysis of the sequence - structure relationship 

We analyzed the amino acid informativity of the central residue for each HPM structural 

class thanks to the Kullback-Leibler asymmetric divergence measure KLd (Kullback and 

Leibler, 1951). The higher this relative entropy is, the more informative is the site in terms of 

amino acids. The sequence informativity is high along the HPM with KLd values varying 

within the range [0.03; 1.23]. HPM regions with high sequence information content were 

highlighted, e.g., [11-22] corresponding to the C-terminal extremity of a β-strand and a 

transition towards an α-helix (the KLd sum over this region is equal to 2.71). The five highest 

KLd values are associated with Glycine and Asparagine rich prototypes (#32, #48, #87, #104 

and #120; see Fig. 6). The average KLd value for these five prototypes is equal to 0.95. They 

are all located in HPM turn regions. This result is related to the propensity of Gly and Asn for 

belonging to reverse turns (Fuchs and Alix, 2005). Other particularly informative sites were 

pointed out, e.g., #64, #91 and #112. They are also characterized by Gly and Asn but to a 
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lesser extent and are located in turn regions.  

Moreover, we assessed the variation of the KLd values for the HPM built with or without 

introduction of gaps. This analysis shows a light increase of the sequence informativity along 

the HPM when gaps are present. The sum of KLd values along the no gap HPM sites is equal 

to 19.16 versus 21.46 for the gap HPM. 

Hierarchical clusterings have been done on the amino acid distribution and in parallel on 

the distribution of PBs. Concerning the amino acids, seven clusters have been identified. The 

two first groups isolated amino acids that play particular roles, namely Glycine and Proline. 

The third and fifth groups were composed principally of polar amino acids whereas the fourth, 

sixth and seventh groups include mainly hydrophobic amino acids. The second analysis 

corresponds to a hierarchical clustering of the 120 structural prototypes according to their 

amino acid central residue distributions. Four clusters have been identified (see 

supplementary data 5). The first one corresponds to 37 structural classes, β-strand local 

structures, i.e. located in HPM regions from β1 to β7. The second cluster gathers 38 structural 

classes in majority associated with HPM α helical regions, i.e., from α1 to α3, but also to 

their edges, i.e., T1. The third cluster is composed of 40 structural classes primarily associated 

with HPM loop and turn areas. Finally, the fourth cluster isolates 5 structural classes primarily 

characterized by the presence of Glycine and Asparagine. They are the most informative ones 

with regard to their sequence information content, as highlighted previously by the KLd 

analysis. 

 

3.5- Extraction of sequence - structure dependence common to prototype subsets 

Figure 7 summarizes the results of the four first canonical correlations. 
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3.5.1. The first canonical correlation highlights five G- and N-rich structural classes 

The first canonical correlation coefficient R1 is equal to 0.97, which corresponds to 94% of 

explained variance (= R 2
1 ). This canonical correlation between sequence and local structure 

points out 5 particular classes with a well defined PBs and amino acids composition, i.e., #32, 

#104, #120, #87 and #48 (Fig. 7F1); they have loading values far away from all the other sites. 

These classes located in turn regions have been detailed and discussed above. The analysis of 

the canonical factor loadings (threshold fixed at 0.3) confirms their structural characteristics 

with the presence of PBs i, j or p, and to some extent by the absence of m and d (i.e., regular 

secondary structures). In terms of amino acid characteristics, the major role played by Glycine 

and Asparagine in these structural prototypes is confirmed. These two amino acids are 

opposed to nearly all the others, which are strongly under-represented when they are under-

represented. As expected, this first contrast factor emphasizes structural classes that present a 

strong sequence - structure determinism. 

 

3.5.2. Opposition between α-helices and β-strands is pointed out by the second canonical 

correlation 

The second canonical correlation highlights an opposition between α-helices to β-strands, 

creating on the Figure 7 F2 a gradient from one to another. The canonical correlation 

coefficient R2 is equal to 0.94, i.e., 89% of explained variance. This gradient opposes the 

classes characterizing the α-helices, e.g., α1, α2, α3, and their edges, to those characterizing 

the β-strands, e.g., β1, β5, β6, and their edges. With regard to the canonical factor loadings, 

the significant PBs are m, n and l what are opposed to d and c. The amino acid preferences 

pointed out to the equivalence classes previously associated to the local structures are found: 

the amino acid equivalence classes IV and V favored in α-helices opposed to the equivalence 

classes VI, VII preferred in β-strands and to the class II, present in the edges. 
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3.5.3. The third canonical correlation stresses a differentiation between β-strands and loops 

The third canonical correlation opposites primarily loops, e.g., T2, T3, T5, T6, T7 to β-

strands and their transition towards α-helices, e.g. β1, β3, T1, T5. The canonical correlation 

coefficient R3 is equal to 0.93, i.e., 86% of explained variance. The significant PBs that 

emerges from the factor loadings analysis are f, k and h, opposed to d (Fig. 7 F3). Concerning 

the amino acids, we observe the equivalence classes II and III opposed to parts of IV, VI and 

VII, a result in agreement with their preferential local structures. The PBs (d, f, h and k) 

pointed up with the third canonical correlation characterize transitions between β-strands and 

α-helices. Theses transitions are also found in agreement with the literature, as the canonical 

correlation opposite amino acid characteristic of loops (e.g., by Pro, Asp, Ser, Asn, Thr) and 

amino acid characteristic of β-strands (e.g., Ile, Val, Phe, Tyr, Met) and α-helices (e.g., Leu).  

 

3.5.4. The fourth canonical correlation reveals a contrast between two categories of loops 

The fourth canonical correlation more surprisingly puts in opposition two different 

categories of loops. The percentage of explained variance, however, strongly decreased 

(R 2
4 =68%, i.e., a fall of around 20% relative to the previous R² contribution). The significant 

PBs according to their canonical factor loadings are k opposite to f and o. The amino acids 

analysis exhibits a category of loops characterized by Pro (amino acid equivalence class II) in 

contrast to loops characterized by His, Asn, Ser, Asp and Thr (amino acid equivalence class 

III, primarily) (Fig. 7 F4). It is worthwhile to note that successive structural classes appear in 

different extremities of the gradient, e.g., #19, #39, #53, #65, #84 opposing to #18, #38, #54, 

#64, #83. Interestingly, the structural class #38, which was associated with #39 and #53 at the 

same extremity of the gradient in the third canonical correlation, is now opposite to them. 

This point underlines specific amino acid contents in two contiguous HPM sites. Hence, this 
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fourth canonical correlation enables to discriminate between different types of loops. Other 

analyses are presented in supplementary data 6. 

 

4. Discussion  

The Hybrid Protein Model enables us to carry out the compression of a whole protein 

structure databank by a fast and efficient processing. The library obtained is composed of 120 

contiguous prototypes with a high structural stability and representative of the local structural 

motifs encountered in the protein structures from the databank. Hence, it constitutes a useful 

tool for accurately describing 3D structures in terms of long local structural prototypes. These 

results are interesting as the characterization of local structures is a complex problem 

(Karchin et al., 2003; Kolodny et al., 2002; Micheletti et al., 2000). The use of overlapping 

fragments encoded into a structural alphabet enables to circumvent the difficulty of finding a 

length for describing all protein local structures. Indeed, despite the use of a fixed fragment 

length (7 PBs) for the training, the HPM approach, based on the concept of “information 

sharing”, allows the definition of longer structural regions.  

The HPM training involves different parameters that directly influence the final prototype 

library. The sensitivity study of the training according to these control parameters has already 

been carried out to ensure the building of an optimal prototype library (Benros et al., 2003). A 

global structural stability of the library is observed in the different trials of HPM building: the 

significant structural regions related to the regular secondary structures and to their transitions 

are systematically found.  

Compared to our previous study, we have added different improvements in the HPM 

strategy (de Brevern and Hazout, 2001). For example, the introduction of gaps within the 

local structural fragments is an interesting tool. It permits to take account of the regular 

secondary structure length variability and enlighten the heterogeneity of some local structures, 
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e.g., regular structure edges (see Fig. 5). Interestingly, our results suggest that long loops are 

combinations of small ones like as suggested in previous studies and strengthen the idea 

developed by (Ring et al., 1992) who described compound loops as combinations of simple 

loops. In addition, it appears clearly that gaps contribute to improve the HPM site specificity 

in terms of PB signatures. The HPM is equivalent to a "structural profile" (Gribskov et al., 

1987), resulting from multiple alignments of local structural fragments with gaps. The HPM 

can also be compared to a local Hidden Markov Model (Rabiner, 1989), with the advantage of 

not requiring a priori parametric distribution laws. 

Among the different structural motifs of the library, tight turns are of great interest because 

they occur frequently in protein structures (Chou, 2000). We highlight eight zones for these 

turns precisely located along the HPM. This latter enables the analysis of turns in their 

environment since the fragments clustered are 7 PBs in length, i.e., 11 amino acids. It could 

be of great help for the precise analysis of turns as their assignment is strongly dependant of 

the assignment of repetitive structures (Bornot and de Brevern, 2006). Specific PB series 

characterized turns and three main signatures have been identified; they show highly specific 

transitions between the successive PBs. Moreover, the effect of environment can lead a same 

population of turns to be encoded by different series of PBs, like the β type I turn associated 

with the series fklm and mnop. So, they are distributed in different HPM regions. Furthermore, 

a precise PB series associated to a particular turn can be found in different HPM regions, like 

the series ehia associated to the β type II turns and encountered in HPM regions T3b, T6b and 

T8b. Conversely, different turn types can be encoded by the same PB series and associated to 

the same HPM regions, like the series ehia for the β type II and inverse I turns localized in 

T6b. The flanking zones of the turn thus play a major role in the determination of its location 

in the HPM. Furthermore, our analysis suggests that longer turns are generated by a limited 

number of PB motifs. These motifs are found in the Structural Words we have previously 
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described (de Brevern et al., 2002a). 

Analysis reveals that the amino acid informativity is high along the HPM. Beyond the 

informativity associated with the regular secondary structures, the HPM highlights 

informative structural classes corresponding to loops. As an illustration, the sequence 

information content is particularly high for the HPM regions associated to turns. 

Through the building of our structural prototype library, we have identified seven amino 

acid equivalence classes, and, linked these equivalence classes with their preferential local 

structures. As expected, the specific roles played by Glycine, which can increase local 

flexibility in structures, and Proline, which forms kinks, are pointed out, since these two 

amino acids are clearly isolated from the others. The strong preferences of Alanine and 

Leucine for α-helices and of Isoleucine and Valine for β-strands appear clearly. The HPM 

exhibits also significant preferences for Glycine and Asparagine in turn zones. The results 

obtained are in accordance with classical preferences (de Brevern et al., 2000; Offmann et al., 

2007). Moreover, the HPM provides additional information notably on the association of the 

different equivalence classes. With these seven amino acid equivalence classes identified 

through the HPM, the complex relation existing between the set of 20 amino acids and the 

structure can be simplified. This approach is slightly different from the classical ones used 

(Etchebest et al., 2007; Murphy et al., 2000; Wang and Wang, 1999). 

The canonical correlation analysis gives several interesting properties concerning the 

prototypes sequence - structure specificity. For example, the structural prototypes localized in 

HPM turn areas and characterized primarily by Glycine have a higher sequence – structure 

correlation than the regular secondary structures. This observation emphasizes the sequence – 

structure determinism existing in loops. Furthermore, it is worthwhile to note that loops can 

be separated only with the fourth correlation. It underlines the difficulty of differentiating 

them and the interest of HPM approach as discriminatory criteria. A major result concerns the 
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identification of two categories of loop prototypes distinguishable by their structure and 

sequence information content. These results will be of great interest for protein local structure 

prediction. However, it appears from the analysis of the canonical communality coefficient 

that the amino acid variability is only partially explained. Other factors are probably required, 

such as long range dependency. 

 

5. Conclusion 

Protein structures can be seen as a combination of small local structures yielding a more 

detailed description than classical secondary structures. A complete set of prototypes defines 

‘‘a structural alphabet’’ that approximates accurately protein structures (Benros et al., 2007; 

Karplus et al., 2003; Offmann et al., 2007; Sander et al., 2006; Tyagi et al., 2007). We have 

proposed such a structural alphabet which is composed of 16 average protein fragments of 5 

residues in length called Protein Blocks (PBs) (de Brevern, 2005). This alphabet was used 

both to describe 3D protein backbones but also to perform local structure prediction (de 

Brevern et al., 2000; de Brevern et al., 2007; de Brevern et al., 2004; Etchebest et al., 2005). 

Moreover, PBs have proven their efficiency both in description and prediction of longer 

fragments (de Brevern et al., 2002a) and loop conformations (Fourrier et al., 2004), to predict 

protein class(de Brevern et al., 2005a), to compare protein structures (Tyagi et al., 2008; 

Tyagi et al., 2006a; Tyagi et al., 2006b), to detect magnesium-binding sites (Dudev and Lim, 

2007), to build protein structures (Dong et al., 2007) and transmembrane proteins (de Brevern 

et al., 2005b). 

We extended this description to longer fragments thanks to HPM (de Brevern and Hazout, 

2000; de Brevern and Hazout, 2001). New developments were proposed (de Brevern and 

Hazout, 2003) as a specific one to treat genomic data (de Brevern, 2002; de Brevern et al., 

2002b). It was recently used to predict protein local structure from sequence (Benros et al., 
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2006). Here, we evaluated the influence of introductions of gaps during the training process of 

HPM library. Thanks to the specific research done on the different kinds of turns; we have 

proved the efficiency of HPM to take into account characteristic local protein structures in 

different local neighborhood. Thus, this original procedure yields new interesting features 

about structural motifs and their sequence signature. Canonic correlations show also that 

HPM training capture classical sequence – structure relationship, even only the structure 

encoded as PB strings are used. 

Local protein structure is one of the most successful and approaches to generate structural 

model based (Du et al., 2003; Pei and Grishin, 2004). Compared to similar fragment-based 

approaches, our library will have the advantage of presenting overlapping prototypes, which 

will be of great interest while reconstructing the global 3D structure. 
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Captions 

 

Figure 1. Protein Blocks: From left to right and top to bottom, YASARA 

(http://www.yasara.org/) images of the 16 Protein Blocks of the structural alphabet. Each 

prototype is five residues in length and corresponds to eight dihedral angles (φ,ψ). The PBs m 

and d can be roughly described as prototypes for the central α-helix and the central β-strand, 

respectively. For each PB, the N-cap extremity is on the left and the C-cap on the right. 
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Figure 2 Training of the Hybrid Protein Model (HPM): (a) The HPM is a closed linear neural 
network and can be represented by a ring of N neurons, i.e., structural classes (in our study, N 
= 120). (b) Each neuron is associated to L distributions of the 16 PBs composing our 
structural alphabet (in our study, L = 7). Hence, the HPM can be represented by a matrix of 
dimension N x 16. Two successive structural classes are overlapping since they share (L-1) 
sites. (c) For each structural fragment of L successive PBs taken randomly from the databank 
(for example, fklmmm), we search for the most similar pattern present in the HPM. 
Consequently, a log odds score Sc(s) is computed along the HPM. The identification phase 
consists in selecting the structural class sopt the most similar to the local structure presented, 

i.e., the winning neuron associated to the maximum score Smax. (d) The enrichment phase 

consists in slightly modifying the PB distributions of the structural class corresponding to the 
site sopt, to increase the likeness between the winning neuron and the presented fragment. 
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Figure 3. (a) Final Hybrid Protein Model, i.e., matrix of PBs distributions. The gray level 

indicates the PB frequency, which varies from 0 (i.e., white) to 1 (i.e., back). (b) Distribution 

of the structural fragments: total number of fragments (in black) and number of fragments 

with gaps at each HPM site (in white). The number of fragments in the site 24 is 13,790. The 

peak has been truncated (c) Specificity along the HPM quantified by the Neq value 

(equivalent number of PBs) for fragments with gaps (in black) and without gaps (in white). 

The Neq values for the sites 88 and 89 are 10.3 and 12.4, respectively. 
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Figure 4. Structural prototypes of the HPM, corresponding to the sites 1 to 64 by steps of 3 

(see supplementary data 3 for the last ones). Each prototype of 11 amino acids corresponds to 

a series of 7 PBs. The PB chains of the corresponding structural classes are indicated as their 

N- and C-terminal extremities. It is possible to see the overlapping between consecutive 

prototypes, e.g., the 8 N-terminal residues of the prototype 4 overlaps the 8 C-terminal 

residues of prototype 1, and so on. 
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Figure 5. Examples of structural fragments with and without gaps associated to the HPM site 

27. The introduction of gaps in some structural fragments enables to point out two different α-

helix C-terminal extremities. 
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Figure 6. Over-represented (respectively under-represented) amino acids are displayed above 

the line (respectively under the line) along the HPM (Z-scores > 2.57 and Z-scores ≤ -2.57, 

respectively). (a) sites 1 - 60 and (b) sites 61 - 120. A color is associated to each amino acid 

group previously identified by the hierarchical clustering (7 groups; see paragraph 3.4 and 

supplementary data 5). We have located the different regions of regular secondary structures 

(α-helices and β-strands) as well as the regions corresponding to turns. 
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Figure 7. Canonical correlation analysis between the sequence and the structure data 

associated to the HPM sites. Only the results of the four first canonical correlations are 

displayed. For each one, we have represented the canonical correlation plot with particular 

local structures pointed out. The squared canonical correlation, which corresponds to the 

percent of explained variance, is printed on the regression line. The values of the canonical 

factor loadings associated to the PBs and to the amino acids are also displayed with a circular 

representation. Thresholds are fixed at +0.3 for the over-representations and -0.3 for the 

under-representations, delimiting a non-significant region (in pink). Hence, variables here and 

there from this region are opposed. The amino acid colors are assigned according to the 7 

groups previously identified by the hierarchical clustering. The PBs are colored according to 

their local structures. (a) The first canonical factor points out 5 structural prototypes, i.e. #32, 

#48, #87, #104 and #120, corresponding to transitions between regular secondary structures 

and characterized by Glycine and Asparagine. (b), (c) and (d) The three other canonical 

factors correspond to gradients. 
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Table I 

Analysis of the γγγγ-turns, ββββ-turns and αααα-turns in the HPM. We focused on the three major 

locations of the turn of interest in the HPM and the corresponding turn proportions are shown 

as well as the Neq value of the HPM region. Moreover, for each turn type, it is specified its 

main PB signatures and the number found in the databank. The PBs displayed in bold are 

highly significant (Z-scores > 4.4). Eight different HPM turn regions have been identified and 

each one is characterized by sub-regions. They were labelled as follows : T1a=[29-32] and 

T1b=[29-33]; T2=[38-41]; T3a=[45-49], T3b=[46-49], T3c=[46-50], T3d=[47-50], T3e=[49-

53] and T3f=[52-55]; T4=[63-67]; T5a=[83-87], T5b=[84-88], T5c=[84-92], T5d=[85-88], 

T5e=[85-89], T5f=[86-87;89-91] and T5g=[88-91]; T6a=[101-105], T6b=[102-105], 

T6c=[103-105] and T6d=[105-108]; T7a=[110-114], T7b=[110-115], T7c=[111-113], 

T7d=[111-114] and T7e=[114-115;117-1]; T8a=[117-1], T8b=[118-1], T8c=[118-2], 

T8d=[119-1], T8e=[119-2] and T8f=[119-120;3-5]. Six sub-regions show gaps, namely T3e, 

T5c, T5f, T7b, T7e and T8f. The turns have been extracted from the 1143 protein chains of set 

2.  
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