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Abstract 
Protein structures are classically described in terms of secondary structures, i.e., 

two regular states, the -helices and the -strands and one default state, the coil. Even if 

the regular secondary structures have relevant physical meaning, the definition of 

secondary structures has some important (and often forgotten) limitations: the rules for 

secondary structure assignments are (i) not simple, (ii) not unique and (iii) 50% of all 

residues, which occur in the coil, are not described. Hence, different research groups have 

described local protein structures with the aim of analyzing them and to approximate 

every part of the protein backbone. These libraries of local structures consist of sets of 

small prototypes named "structural alphabets". They have also been used to predict the 

protein backbone conformation. In this chapter, we first present the secondary structures, 

i.e., the most classical approach to describe protein structures, followed by the different 

structural alphabets designed till date. We focus on the different prediction schemes 

developed with these structural alphabets. 
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Introduction 
Proteins play a crucial key role in most of the cellular processes. They act as 

enzymes, transcription factors, mediators in cell signalling, transporters, storage 

molecules or have structural, regulatory or protective roles. Many diseases are associated 

with abnormality in protein functions. At this day, proteins are also the most important 

drug targets. The protein three-dimensional (3D) structure is directly dependent on its 

biological function. So a good understanding of 3D structure often gives sufficient hints 

to understand the protein functions and this forms the basis of structure based drug design 

[1]. Only about a percent of the total number of sequenced proteins have experimentally 

determined structures [2] and a considerable number of these proteins are without known 

functions [3]. Considering the fact that the amino acid sequence of a protein determines 

its 3D structure, one often tries to extract the structural information embedded in the 

sequence. 

Even before the first protein structure was solved, Pauling and Corey proposed 

two major repetitive structures than could occur within protein structures: the -helix and 

the -sheet [4,5]. Since then, these repetitive structures are not only being used to analyze 

the protein structures, but also to predict them. Nonetheless, this description has some 

limitations that have lead to the definition of a more complex concept of structural 

alphabets. Here, we will present the secondary structures and the different structural 

alphabets designed at this day. 
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Repeating structural elements in proteins 
A number of repeating structural elements have been observed in the known 

protein structures. Representing proteins in terms of secondary structures like helices and 

strands, is known to be useful for visualisation, prediction, classification and analysis of 

protein structures [6-8]. Several methods for assigning secondary structures and other 

repeating elements (discussed in the following paragraphs), have been developed. 

Methods like DSSP [9] or STRIDE [10] use the information on the hydrogen bonding 

patterns to characterize these secondary structures. PROSS [11] and SEGNO [12] uses 

torsion angle information for assignments while others [13], use the inter C  distances 

either alone or along with the information on the hydrogen bonding pattern and dihedral 

angles, for assigning secondary structures. 

 

Classical secondary structures. The classical way of describing protein structures 

is in terms of alpha helices and beta sheets, the two major repetitive local structures in 

proteins [14]. These repeating units are characterized by the pattern of hydrogen bonds 

formed by the protein backbone. -helices involve hydrogen bonds between i
th

 and i+4
th

 

residues while -sheets are composed of extended strands with hydrogen bonds formed 

between adjacent strands. -sheets help to bring together parts of protein that are far apart 

in the sequence, while helices involve consecutive residues in a sequence. The planar 

arrangement of beta strands gives rise to steric constraints that cause consecutive side-

chains to point in opposite sides of the plane.  

Analysis of sequence-structure relationships has shown over- and under-

representations of certain amino acids. Richardson and Richardson and Pal and et al. have 
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made a detailed analysis and shown that short and long helices have different amino acid 

compositions [15,16]. The sequence specificities of beta strands have also been studied 

[17] as of their ends [18]. Experimental and statistical works on analysis of specificity of 

pairs of interacting residues in neighbouring strands have given limited results and failed 

to present and pertinent laws for their associations. The recent studies mainly focus on 

the crucial question of protein aggregation [19]. Analysis of helix signals in proteins 

highlighted the hydrophobic capping, a hydrophobic interaction that straddles the helix 

terminus and is always found to be associated with hydrogen-bonded capping [18,20,21]. 

During the seventies, predictions of regular secondary structures have been 

carried out using statistical approaches [22]. The introduction of Artificial Neural 

Networks coupled with evolutionary information has led to an impressive increase in the 

prediction rate, e.g. PHD methodology [23]. The secondary structure prediction rate has 

reached a maximum limit that is slightly better than 80%. The two most widely used 

programs are PSI-PRED [24] and SSPRO [25,26]. No new significant improvements 

have been seen during the last few years. It is considered that the secondary structure 

prediction is no more a research area that can be really improved.  

 

Other Helical and Extended conformations. Several other repeating structural 

elements are also observed (see Figure 1 for some examples). Apart from -helices, other 

helical states like 310 and  are also found, covering around 4% and 0.02% of residues 

respectively. 310-helices are characterized by inter-residue hydrogen bonds between i
th

 

and i+3
th

 residues. Majority of 310-helices involve only one turn [27]. They are usually 

found at the termini of a -helices, often link two alpha helices like what is observed in 
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hairpins and corner motifs [28]. -helices involve inter-residue hydrogen bonds between 

i
th

 and i+5
th

 residues. Dynamic transitions between alpha and 310- and - and -helices 

have been proposed to occur during the folding and unfolding process [29]. As shown 

with Figure 1, these different helices are short and thus difficult to assign precisely. For 

instance, the 310 helix shown is the only one assigned by DSSP and PROSS, each ones 

assigned the other 310 helices of this cytochrome as coil or turn (see [13,18,30]for more 

details). 

Isolated extended structures that are not part of a β-sheet are also found in 

proteins and they are generally exposed to solvent [31]. SSPRO8 has the potentiality to 

predict them. However due to low occurrences, the prediction of -helices or isolated 

extended structures becomes difficult. 

 

Figure 1. Some less common ‘secondary structures’. A cytochrome P450 (PDB code 1IO7 [32]) 

has been assigned using DSSP and PROSS. One 310 helix has been assigned by both approaches (positions 

148-150) while PROSS is the only one to have assigned one -helix (positions 120-123). PROSS has also 

assigned one Polyproline II (positions 71-73). Different b-turns have also been located; the one represented 

encompassed the amino acid from positions 35 to 38. Visualisation has been done using PyMol [33]. 
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Turns. The first description and analysis of turns has been made by 

Venkatachalam [34]. The turns correspond to a short return of the protein backbone. It is 

the third most studied secondary structure. A turn with n residues has a distance less than 

7 Å between the C  carbons of residues i and i+n. Also, the central residues are not 

helical and at least one residue must not be extended. There are four different types of 

tight turns: γ-turns (3 residues), β-turns (4), α-turns (5) and π-turns (6 residues). Each of 

these is further classified into different types based on the  /  dihedral angles. γ- and β–

turns are the most widely studied types of turns. About 25 to 30 % of residues correspond 

to β-turns. Till date, seven types of β-turns have been characterized [35]. As seen on 

Figure 1, the -turn can be easily confounded within a helical structure, e.g. -helix. 

Moreover, they are often multiple, i.e. successive -turns overlap. 

The first secondary structure prediction method was also dedicated to predict the 

β-turns [22]. However, due to the difficulty associated with its prediction, the secondary 

structure prediction had been rapidly limited to the prediction of -helix, -sheet and 

coil. Nowadays, the prediction of β-turns is done mainly after a prediction of three-states 

secondary structures, as in PSI-PRED [24] or the method based on statistical approaches 

[36] or advanced classifiers like Support Vector Machines [37]. Prediction accuracy of 

turns is nowadays quite acceptable; however the prediction of some rarely seen turns 

remains low [36]. Very recently Klebe‟s group had done a new learning of the „turns‟ to 

define a novel classification of open and hydrogen-bond turns [38,39]. They also 

developed a prediction method. 
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Polyproline II. Polyproline II helices (PII) are left handed helical structures that 

help in the formation of coiled-coils in fibrous proteins [40]. The left handedness is 

characterized by specific dihedral angles and trans-isomers of peptide bonds. The  /  

dihedral angles (approximately -75° and 145° respectively) fall in the region that is 

characteristic of -strand. These helices are often solvent exposed and also associated 

with high temperature factors [41]. Non-local interactions suggest a prominent role for 

PII helices in protein-protein and protein-ligand interactions [42,43]. It must be noticed 

that PII can exist without any Proline. For instance, the only Polyproline observed within 

this cytochrome P450 contains only one Proline (see Figure 1). So it has been noted that 

designation PII is a bit misleading, since the conformation is not just associated with Pro 

but can be adopted by all amino acids. In a recent and fine study, about one-third of the 

residues in the center of PII tripeptides are Pro; the rest include all types of amino acids. 

The authors proposed that the common name could be changed to a more general 

“polypeptide-II” conformation [44]. Only PROSS [11], XTLSSTR [45] and SEGNO [12] 

are capable of PII assignment, it is not the case for instance of DSSP [9], STRIDE [10], 

P-SEA [46], VOTAP [47] or PROSIGN [48]. To the best of our knowledge our 

knowledge, only one group had recently developed prediction methods of PII [49].  

 

Loops. Even after performing helical, strand and turn assignments, about 50% of 

the residues are left out and are associated to the coil state. Thus different classification 

approaches have been developed to analyze the regions connecting repetitive structures. 

-hairpins are the most studied type of specific loops, thanks to their high frequency of 

occurrence. They connect two adjacent anti-parallel beta strands. They are grouped into 
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different classes based on their length and conformation. Other types of loops joining 

beta strands like the β-β corners and orthogonal β-β motifs have also been studied. 

Characteristic sequence patterns are often observed in the strand-loop-strand motifs and 

some dedicated prediction strategies based on neural networks, have been developed [50-

52]. Prediction rates of -hairpins go up to 80%, leading to an overall prediction rate of 

65% for the four states [52]. -  turns and corners have also been studied extensively 

[53]. Complete loop regions have also been analysed. Most of these studies are focussed 

on loops of length less than nine residues leading to some classifications [54]. ArchDB is 

an online method available to find potential compatible loops [55]. 

Beyond secondary structures 

 

Figure 2. The different descriptions of a protein structure. (a) The atoms are presented as in the 

PDB file. (b) Links are done between the atoms. (c) Only the backbone is shown. (d) The secondary 

structures are assigned. (e) Only the regular structures are really assigned. 
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Secondary structure assignments are widely used to analyze protein structures. 

However, it often gives a wrong representation of real protein structures. Figure 2 shows 

the idea behind the secondary structure assignment. From the atomic co-ordinates in the 

PDB file, (cf. Figure 2a) covalent bonds can be assigned to link the atoms (cf. Figure 2b) 

or only the protein backbone can be considered (cf. Figure 2c). The secondary structure 

assignment as shown in Figure 2d is the classical way to see it, but as shown in Figure 2e, 

about half of the residues are not assigned any secondary structure. 

Moreover, it could give a wrong impression that helices and/or strands are ideal. 

Though helices and strands are geometrically defined as stable structural elements, local 

irregularities are often seen. The majority of -helices is not linear but curved (58%) and 

even kinked (17%) [13,56]. Contiguous stretches of intra-helical residues exhibiting non-

helical geometry have also been well-defined; they are named -bulges [57]. They are not 

frequently observed but are implicated in the protein function.  

Like -helices, -strands are also found to have local stretches with non extended 

conformation, called -bulges [58,59]. An elaborate classification of -bulges has been 

made by Thornton‟s group [60]. They are observed quite frequently. 

Secondary structure assignment is often considered as a resolved problem and 

assignment made by DSSP is considered as THE true and the only possible secondary 

structure assignment. However, it is not the case and the huge number of different 

assignment methods proved it [10,11,13,18,45-48,61-65]. The most important factor is 

the choice of descriptors and the parameters used, e.g. distances, angles. Even with 

similar descriptors, the assignments could be different as shown by [62]. It has a strong 
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impact of the assignment by itself. Protein flexibility also plays an important role. 

Comparison of different secondary structure assignment methods has shown some 

surprising results: difference in assignments could be seen in about one in five residues 

[66,67]. These different problems had led to the idea that some other descriptions of local 

protein structures can be useful. 

Local structure libraries 
 

The absence of secondary structure assignment for an important proportion of the 

residues has lead some scientific teams to develop local protein structure libraries  (i) that 

are able to approximate all (or almost all) of  the local protein structures and (ii) that do 

not take into account the description of classical secondary structures. These libraries 

brought about the categorization of 3D structures without any a priori knowledge of 

small prototypes that are specific for local folds found in proteins. The complete set of 

local structure prototypes defines a structural alphabet [68]. A structural alphabet, being 

able to approximate the local structures in proteins, helps to represent the structural 

information in one dimension as a sequence. Such a representation also presents methods 

that are effective and computationally cheap for the comparison and analysis of protein 

structures (see Table 1 [69]). 

 

Building Blocks. Unger et al. were the first to develop a structural alphabet using a 

clustering approach based on Cα root mean square deviation (RMSD) [70]. They had 

chosen hexapeptides as the smallest units that can represent unique local structural 

information. Using a clustering method called “of annexation” and an RMSD threshold 
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of 1 Å for clustering. They were able to select about 100 representatives (which they 

called as “building blocks”). They were able to cover 76% of hexapeptide fragments in 

the dataset, with an RMSD less than 1.0 Å. [71]. They then carried out a first detailed 

study of those building blocks associated with extended strands. 

 

Hierarchical clustering. Rooman and Wodak extended their work on protein 

secondary structure prediction to the description of local protein structures [72]. For this 

purpose, they performed a hierarchical clustering based on Cα root mean square deviation 

(RMSD). They were mainly interested on prototypes of different lengths and they tested 

fragments of lengths ranging from four to seven residues long [73]. They selected four 

different prototypes for each length. This limited number was chosen based on their final 

purpose: perform a prediction of these local protein structures from the sequence. Using a 

simple statistical approach, they obtained a correct prediction rate ranging from 41 to 

47% [74]. 

 

C  distances and dihedral angles. Pretrelski and et al. have developed a 

structural alphabet to support their experimental studies on trypsin-like proteins [75]. For 

this purpose, they used a combination of linear C  distances and the C  dihedrals to 

generate a set of local structural prototypes. The scoring function designed is a complex 

combination of C  distances and the tangent of the dihedral angles. They could find 113 

prototypes that are of five residues in length [76]. Their approach was only based on 

structural approximation. 

 



Wiley STM / Editor: Protein Structure Prediction,  

Chapter 5 / Joseph, Bornot and de Brevern / filename: chapter_Local_Structure_Alphabet_05.doc 
page 12 

Self-Organizing Maps. Schuchhardt and et al. designed a complex Self-

Organizing Map [77,78] to generate local structure prototypes. Their learning approach 

was based on protein fragments that are nine residues in length encoded as series of  /  

angles, i.e., 16 dihedral angles. They could characterize 100 structural prototypes [79]. 

Interestingly, they could also identify amino acid preferences associated with some 

structural prototypes that can be considered as part of protein loops. 

 

Auto-associative Neural Network. Fetrow and et al. generated a set of local 

protein structures using a learning method more complex than the earlier ones [80]. They 

used an auto-associative neural network (autoANN). This specific neural network has 

input and output layers with similar dimensions. The hidden layer thus does a compaction 

of the information. They used this hidden layer to characterize seven residue long 

fragments encoded as distances, bond and dihedral angles. They generated six structural 

prototypes and also performed an analysis on the amino acid composition of each 

prototype, underlining some specificities related to repetitive structures. 

 

I-sites. Based on a library of short sequence patterns having high correlation with 

the 3D structure, Bystroff and Baker developed an efficient method for predicting local 

protein structures [81]. They identified frequently occurring sequence motifs by 

automatic clustering and characterized their corresponding local structures. They further 

developed an iterative method to optimize the correspondence between sequence and 

structure. Sequence based clusters were generated with the HSSP protein families [82] 

and the most frequent local structure in each cluster was chosen as the structural 
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paradigm. An iterative process similar to the k-means approach was then employed, by 

re-estimating the paradigms obtained from clusters formed from the dataset. The 

clustering on the structure space was done using criteria of C  distance and dihedral 

angle measure. A library of 82 sequence clusters that are 3 to 19 residues long, were 

obtained finally. The local structural paradigms corresponding to these clusters were then 

structurally aligned to get 13 different sequence-structure motifs, which they called “I-

sites”. The library of I-sites presented new sequence-structure relationships. 

In combination with the secondary structure prediction method based on profile 

based neural networks, PHD, the sequence-structure relationships in the I-sites were used 

to develop a local structure prediction method leading to a prediction rate of ~ 50%. The 

prediction method performed well in the CASP2 trials and the prediction for -spectrin 

SH3 domain had good correlation with NMR results [83].  

They further generated a set of hidden Markov model based profiles called 

HMMSTR for the sequences in the I-sites library. This HMM was built using overlapping 

I-sites using an updated dataset [84].  

 

Hidden Markov Model. The first work done by Pr. Serge Hazout (also see 

Protein Blocks section) was on short protein fragments of 4 residues. Described as series 

of C  distance, these fragments were learnt by a classical Hidden Markov Model [85]. 13 

structural prototypes were obtained from the model and some of them showed specific 

amino acid preferences. A work dedicated for the prediction of short loops was carried 

out [86]. A specific work focuses on the reconstruction of protein backbone from C  

traces [87]. Another one was based on the specific learning of fragments from outer 
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membrane proteins [88], it has lead to propose 20 structural prototypes that show some 

amino acid specificities. These structural models were used to discriminate CASP 

models. 

 

Oligons. Michetelli and et al. used an iterative procedure to generate local 

structure prototypes based on RMSD [89]. At the first stage the fragments were clustered 

based on the RMSD distribution. The representatives chosen from each cluster, named 

“oligons”, were clustered again and this process was repeated. The optimization process 

is similar to the classical Monte-Carlo approach. This method helps to generate 

prototypes with hierarchical weights associated with them, i.e., the first set of oligons is 

more significant than those that follow. The main aim behind this approach was to 

generate an increasing number of local structural prototypes. They had tested this 

approach on fragments of lengths varying from three to ten residues. Highly satisfying 

results were obtained on structure reconstruction trials using oligons. The importance of 

the fragment length is highlighted, showing that, for longer fragments, a large number of 

prototypes are required for a similar 3D approximation. No specific study of amino acid 

specificities associated with these local protein structures was done. 

 

Centroids. Using a hyper-cosine clustering method, Hunter and Subramaniam 

[90] clustered 7 residue fragments. RMSD was used as the distance measurement. They 

chose a threshold to define the optimum number of clusters, which they called, the 

centroids. Despite a detailed analysis of parameters used to select the threshold, the 

fragment distribution among the 28 clusters finally chosen, is highly uneven. To develop 
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a prediction method based on the set of centroids generated, they used a Bayesian 

predictor that gives the probability of each centroid to occur at a position in the sequence. 

This prediction is highly related to the prediction used for the Protein Blocks (see Protein 

Blocks section) [91]. An overall prediction accuracy of 40% was obtained. However, this 

correct prediction rate gives a wrong impression, as it is in fact highly biased. Indeed, 11 

of the 28 centroids are not predicted at all, which diminish greatly the interest of the 

approach [92]. Moreover, some major divergences can be noted between the two papers 

describing the approach. 

 

k-means. Sander and et al. have developed a novel approach based on the use of 

C  distance matrix comparison [93] using a „complex‟ k-means. They defined 27 

prototypes of eight residues comparable to those developed by Hunter and Subramaniam 

[92]. They also incorporated protein family information by using profiles instead of 

simple sequences. They have tested numerous prediction methods: C.5 classifier, Support 

Vector Machines and random forest. All these approaches have led to an unbiased 

prediction unlike the predictions made using Hunter and Subramaniam approach [92]. 

 

Kappa-alpha map. Tung and et al. have defined a structural alphabet dedicated to 

mine the Protein DataBank [94]. The main principle used in this approach is a measure 

based on C  distance and a nearest-neighbor clustering (NNC)
 
algorithm. A set of 23 

local prototypes were selected and used to identify similar protein structural domains and 

corresponding SCOP superfamilies [95,96]. The search methodology is based on the 

direct use of BLAST algorithm; similar  to the work done earlier with Protein Blocks (see 
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Protein Blocks section), i.e. PBE [69]. Analysis of sequence – structure relationship was 

not done. 

 

SOMs and k-means. Recently, Ku and Hu [97] used the idea developed by 

Schuchhardt et al. [79] and that was used for Protein Blocks design [91], namely defining 

the protein in terms of  /  dihedrals. Like Protein Blocks, they used five residue long 

fragments to define the prototypes. The first step is a classical learning using a Self-

Organizing Map [77,78]. After many simulations with different number of neurons, they 

selected a large map and analyzed it using U-matrix visualization. From these data, they 

clustered the results using k-means approach. Then, a substitution matrix was computed 

and it is optimized to detect SCOP class similarity. A FASTA methodology is used to 

compute the similarity score. Analysis of sequence – structure relationship was not done. 

 

Protein Folding Shape Code. Recently Yang described a novel approach based 

on the description of protein local structures as a vector of angle and distances. He had 

only used C  distances and obtained 27 prototypes of length 5 [98].  

 

Protein Blocks 
 

Design of Protein Blocks. Following an earlier work, Pr. Serge Hazout developed 

a novel structural alphabet, with two specific goals: (i) to obtain a good local structure 

approximation and (i) to predict local structures from sequence. Fragments that are five 

residues in length were coded in terms of the  /  dihedral angles. A Root Mean Square 
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Deviation on Angle (RMSDA) score was used to quantify the structural difference among 

the fragments. This idea was already used by Schuchhardt and et al. [79]. Using an 

unsupervised cluster analyser related to self organised Kohonen maps [77,78], a three 

step training process was carried out: (i) the learning of structural difference of fragments 

has been performed only using the minimal RMSDA as criterion to associated a fragment 

to a cluster, (ii) the transition probability (probability of transition from one fragment to 

another in a sequence) was also added to select the cluster associated to the protein 

fragment, (iii) this last constraint was removed. The optimal number of prototypes was 

obtained by considering both the structural approximation and the prediction rate. A set 

of 16 prototypes called “protein blocks (PBs)”, represented as average dihedral vectors, 

were obtained at the end of this process [91]. Figure 3a shows the 16 PBs. Figure 4 gives 

an example of PB assignment. 

 

Figure 3. Protein Blocks and Local Structure Prototypes. (left) are shown the 16 PBs (5 residues 

in length)), (right) some examples of the 120 LSPs (11 residues in length). LSPs 23, 28, 42 and 69 belongs 

to the helical LSP, LSPs 10, 60, 79 and 106 to extended LSP, LSPs 11, 13, 58 and 100 to extended edges 

LSPs , and, LSPs 1, 65, 90 and 112 to connection LSP. 
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Analysis of PBs. The relationship between PBs and secondary structures was 

analysed. PB m corresponds to the central part of helices while PB d corresponds to 

strands. Some PBs are associated with the N-and C-caps of helices and strands 

representing subtle variations in the termini. Some PBs also represent conserved features 

in the coils. Specific or highly preferential transitions are observed between consecutive 

PBs in a sequence. The three major transitions observed correspond to about 76% of the 

possible transitions. The distribution of PBs, transition probabilities and structural 

definitions has been evaluated and cross-checked using different datasets of proteins. 

These features were found to be highly consistent among the different datasets [99]. 

Table 2 shows the correspondence of all the 16 PBs and the different secondary structure 

elements. It has been computed with a non-redundant databank with 25% of sequence 

identity and a resolution better than 2.5 Å. Protein list has been taken from PISCES web 

server [100] and the secondary structure assignment has been done with DSSP [9]. Table 

2a shows the frequencies of classical secondary structures for each PB, while Table 2b 

shows the opposite. It highlights that a-helix and other helical structures are associated 

only to PBs k to o, while turns are found spread over all the PBs. It underlines also the 

non-equivalence of turns and coils that have specificities.  

 

Structural alignment. Based on PBs, a new structure comparison method (PB-

ALIGN) useful for mining protein structural databases has been developed. Using the 

structural homologues in PALI database [101] encoded in terms of PBs, a dedicated PB 

substitution matrix was computed [69]. Using this matrix with a classical alignment 

approach, it is possible to find structural homologues [102], similar to what is done in the 
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case of amino acid sequences. A recent benchmark has proved that this method is most 

efficient for mining the PDB to find structural homologues [103]. 

 

 

Figure 4. Example of assignment. The zinc endoprotease (PDB code 1c7k [104]) has been 

encoded in terms of secondary structures with DSSP (shown in 3D on the left), but also in terms of Protein 

Blocks and Local Structure Prototypes. The short protein fragment in the black box is detailed with the PB 

and the LSP sequence. The corresponding prototypes are shown also. 

 

Longer fragments. An analysis of preferential transitions of PBs of various 

lengths, suggested that the series of 5 PBs (or 9 residues) present interesting structural 

features [105]. The distribution and consistency of structural features associated with 

fragments representing set of 5 PBs were checked on different datasets and significant 

variation was not observed. Based on the extent to which a set of such fragments can 
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cover a protein chain, an optimal set of 72 fragments called as “Structural Words (SW)” 

were selected. They represented 92% of the databank residues, nearly all the repetitive 

structures and 80% of the “coil”. Most of these SWs were found to overlap; some had 

even four PBs in common. These structural words represent local structure transitions 

and irregularities. Quality of structural approximation was assessed, showing that a 

structural alphabet is meaningful even for longer fragments. 

Following this idea, a novel approach was developed: the Hybrid Protein Model 

(HPM [106]). This specific clustering allows associating longer protein fragments to 

create structural prototypes with high transition between them [107-111]. From a dataset 

of proteins coded in the form of PB sequences, fragment sequences of PBs of varying 

lengths were derived. Similarity between the fragments is decided based on the 

propensities of PBs to occur at each position in the fragment. In this process, for a given 

fragment length, a hybrid protein of an optimal length that can represent the sets of 

preferential transitions of local structures in continuity, is generated. The length of the 

hybrid protein and the propensities of PBs to occur at a position varied during learning. 

Redundant sets of PB transitions (similar propensities at the same positions). The results 

of a HPM approach on a dataset of fragments of length 10 residues, could be effectively 

used for fine description of protein structures and the data was used efficiently for the 

identifying local structural similarities between two cytochromes P450 [107]. An hybrid 

protein of length 233 based of 13 residue long fragments, gave a better description of 

various local structural features [108]. Recent development has given a new hybrid 

protein that has been used for prediction purpose [109,112]. 
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Structure Prediction Using PBs. A Bayesian probabilistic approach was utilized 

for the prediction of PBs from amino acid sequence. For learning the amino acid 

propensities associated with each PB, the set of proteins chains used in training were then 

encoded in terms of PBs, using the minimal RMSDA criterion. Sequence windows of 

length 15 residues were considered for calculating the propensities associated with each 

PB. For every PB, the probability of occurrence of an amino acid at each position in the 

sequence window was calculated and an occurrence matrix was generated for each of the 

sixteen PBs. Bayes theorem was used to predict the structure of new sequences. A 

prediction rate of 34.4% was achieved [91,113].  

One of the limitation of this approach is to average the sequence information 

associated with a PB as only one amino acid occurrence matrix corresponds to one PB. 

Thus, using a clustering approach related to SOM [77], amino acid occurrence matrices 

was split for some PBs, increasing their sequence specificities. Bayesian prediction was 

carried out to achieve an improved prediction rate of 40.7 % [91,113]. In the process of 

generating sequence families, including a simulated annealing approach that maximizes 

the prediction rate, helped to improve the overall prediction to 48.7% [113,114]. No 

biased or unbalanced improvements were detected among the PBs, with this approach. 

Combining the secondary structure information with the Bayesian prediction did not 

result in significant improvement of the prediction rate. A java based program named 

LocPred (see Figures 5 and 6) is available to perform these predictions [113]. 
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A Bayesian prediction approach (without optimization of sequence-structure 

relationships) similar to what was used for PB prediction was also carried out for the 

SWs. A 4% improvement in prediction rate could be achieved [105]. Preferable 

transitions were also observed between SWs occurring in a sequence and certain series of 

SWs were found to be highly frequent. Use of this information with an approach called 

“pinning strategy”, helped to improve the prediction rate significantly [115]. Principle of 

pinning strategy is quite simple: (i) a classical Bayesian prediction is done with SWs, (ii) 

the positions with a high prediction confidence index are selected as “seeds”, (iii) at a 

seed position i, a SW (5 PBs) is predicted; so, a selection is also done at position i-1 (and 

i+1 respectively), one SW that overlaps this SW is selected through the most probable 

SW. It is an iterative process, from i-1 (and i+1 respectively), the prediction is extended 

through i-n (and i+n‟ respectively); it stops when a probability threshold is reached. 
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Figure 5. LocPred use with a structural model. It is possible to confront PB predictions with 3D 

structural model obtained by another approach. (a) The fasta sequence is given and the prediction options 

are selected. (b) The structural model is encoded in terms of PBs with PBE website 

(http://bioinformatics.univ-reunion.fr/PBE/). (c) The PB sequence corresponding to the structural model is 

put into the Comparison form. (d) The compatibility between prediction and structural model is given 

graphically. 

 

A detailed analysis of PB distribution in short loop regions (6 to 10 residues) has 

been done [30]. The description in terms of PBs helped to understand the ambiguity 

associated with the assignment of the boundaries of regular secondary structures based on 

different assignment methods. Specific sequence-structure relationships in the short loops 

could be derived. A Bayesian prediction carried out based on this information gave an 

accuracy rate of 41.2% for the short loops and 36% for the loops in general. A recent 

http://bioinformatics.univ-reunion.fr/PBE/
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study has shown that a specific learning of the different kinds of short loops improved 

greatly the prediction [116]. 

LocPred is useful to predict the protein structures in terms of PBs, but also to 

analyze the sequence – structure relationship of the protein of interest. The simplest 

output of LocPred is a list with the raw prediction values with their confidence indexes 

and the different probabilities. Graphical outputs give visual representations of the 

probabilities associated to each predicted PB, it helps to have an idea of the local 

tendencies, and the confidence index associated to each position, i.e. lower the 

confidence index is, better it is. This option could be so helpful even if the user does not 

want to use PBs, it quantifies the sequence – structure relationship of this protein. 

Figure 5 gives another possibility given by LocPred, i.e. the comparison of a 

structural model and PB prediction. A prediction is performed as given in Figure 5a. 

Many different approaches, softwares and web services allow the obtaining of structural 

model. Thanks to PBE web server (see Figure 5b), it is simple to translate a protein 

structure in terms of PBs. Then, in LocPred, it is possible to compare the assigned PBs of 

the structural model with the PB predictions (see Figure 5c and 6d). Figure 5d shows an 

example of such comparison. For each amino acid position is given the amino acid, the 

position in the sequence and the two PBs, i.e. the assigned and the predicted one. The 

histogram corresponds to the prediction of the best predicted PBs. When the predicted 

and assigned PBs are the same, the histogram bar is plain, otherwise the colour is smaller 

as in the second part of the example (positions 14 to 17). It helps to localize critical 

structural regions of the structural model. 
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Prediction with the Hybrid Protein Model. In order to extend the analyses of long 

structural fragments, the HPM was used to construct a new library of local structures.  

120 structural clusters were proposed to describe fragments of 11-residue long [109]. For 

each class, a mean representative prototype, named Local Structure Prototype (LSP, see 

Figure 3b), was chosen according to C  RMSD criteria. These 120 LSPs enabled a 

satisfying average approximation of 1.6 Å for all local structures observed in known 

proteins. The consequences of long-range interactions are taken into account thanks to 

the high length of fragments. Moreover, the major advantage of this library is its capacity 

to capture the continuity between the identified recurrent local structures. The 

overlapping properties of LSPs were used to identify very frequent transitions between 

them and characterize their involvement in longer super secondary structures [112]. 

Figure 4 gives an example of LSP assignment. 

For each one of the 120 structural classes, high sequence-relationships were 

observed and led the development of an original prediction method from single sequence 

and based on logistic regressions. The main purpose of local structure prediction methods 

is to reduce the combinatory of structural possibilities for a sequence. Thus, it is worth 

noting that this method proposed a short list of the best structural candidates among the 

120 LSPs of the library. Moreover, to identify directly regions easier or difficult to 

predict, each prediction is associated to a confidence index. With a geometrical 

assessment, a prediction rate of 51.2 % was reached. This result was already very 

satisfying given the high length of fragments and the high number of classes [109]. 

Recently, an improved prediction method relying on Support Vector Machines 

(SVM) and evolutionary information was proposed. A global prediction rate of 63.1 % 
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was achieved and corresponded to an improved prediction of 85 % of proteins. A 

confidence index was also defined for directly assessing the relevance of the prediction at 

each sequence site. This method was shown to be among the most efficient cutting-edge 

local structure prediction strategies [112]. Taking advantage of the high length of 

fragments, the relationships between their structural flexibility and their predictability are 

now under study. 

 

Solving a biological problem – DARC. Local structure prediction based on PBs 

was used along with threading, ab initio and secondary structure prediction methods to 

determine the fold of the Duffy Antigen/Receptor for Chemokines (DARC) [117]. DARC 

occurs on the surface of erythrocytes and serves as a receptor for various chemokines. It 

was also identified as the erythrocyte receptor for Plasmodium vivax and Plasmodium 

knowlesi parasites. In the absence of well-defined homologues of known structure, 

modelling of transmembrane proteins remains a difficult task. PB predictions from the 

regions of low information content were highly relevant for the analysis of the models 

generated by energy minimization and molecular dynamics refinements. This example 

was a very good example of interest that helped to analyze the results of simulated 

annealing based prediction with a finer description. We have recently described the use of 

such approaches for the DARC [118] to define pertinent structural models [119]. Figure 6 

describes the protocol used, which is based on (i) biochemical data, some residues must 

be accessible, (ii) transmembrane predictions and (iii) Protein Blocks approach. 
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Figure 6. Building structural models of DARC. (a) Prediction of transmembrane helices. (b) 

Alignment of helical regions with corresponding regions of rhodopsin structure. (c) Potential structural 

templates for the extremities are done thanks to Protein Blocks (d) Addition of these results to the complete 

alignment for comparative modeling. (e) Structural model generation and refinement of these models. (f) 

Accessibility computation of amino acids and known to be exposed. (g) In regards to the results, the 

alignment is modified. (h) At last, some models are selected. (i) As seen on Figure 5, comparison between 

PB prediction and the PB assignment can help to locate arduous regions. (j) PBs can also be used to 

analyze protein molecular dynamics as in [117]. 

 

Comparison of predictions. As most of the structural alphabets are not available 

for use for the scientific community, it is very difficult to make a comparison. 

Comparison of prediction is not trivial, but can be done, even if they are based on 

unrelated methodologies. Yang and Wang developed a database of sequence profiles of 

nine residue fragments, the members of each profile having similar backbone 

conformational state and similar sequences. These profiles are generated in a two step 
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process. In the first step, seed sequence profiles were generated based on  /  dihedral 

states defined by [120] and also on the sequence similarity calculated based on structure 

specific amino acid substitution matrices, [121]. The preliminary profiles, in the form of 

PSSMs were then used to search for more fragments with identical backbone 

conformation and a good sequence-profile match score. A Bayesian prediction pseudo 

count method was used to represent the amino acid occurrence propensities in the 

preliminary PSSMs. For the prediction purpose, the set of sequence profiles with a good 

sequence profile matching score and having at least 60% consistency with the secondary 

structure prediction by PSIPRED, were chosen. For each of the selected profiles, a 

consensus score giving an indication of the extent of backbone conformational similarity 

with others in the set is calculated. The one with the highest consensus score is chosen as 

the predicted candidate. The percent of correct predictions on a dataset were comparable 

to those obtained with HMMSTR. However, based on RMSD between the true and the 

predicted structure, this method is reported to perform better than HMMSTR. The 

prediction accuracy was later improved with the use of SVMs and Neural Networks 

[122]. Prediction made using HPM with linear regression [109,112] was comparable to 

these approaches, and the results are  better with our new approaches that use SVMs with 

evolutionary information. 

More recently, another method for predicting PBs from sequence has been 

developed. Li and et al. propose an innovative combination of PB prediction, taking into 

account the information on secondary structure and solvent accessibilities [123]. 

Prediction rates were improved, and, interestingly their approach was found useful for 

fragment threading, pseudo sequence design, and local structure predictions. 
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Zimmermann and Hansmann developed a method in the recent times, named 

Locustra, for predicting local structures encoded in terms of PBs from sequence [124]. 

The prediction was carried out using SVMs with a radial basis function kernel. For the 

prediction of each class of PB, a two layer classification scheme was used. In the first 

step, the samples belonging to one class was considered as the positive set while those 

belonging to another class were considered as the negative class, i.e., a pairwise coupling 

classifier. 120 classifiers were required. The input sequence data was enriched using the 

information derived from the homologues and a profile of amino acid propensities was 

obtained. The sequence window of 15 residues indicated a feature vector of size 315. To 

estimate the class probability, a cross-validation based method was used. The 

probabilities at each sequence position, obtained from the 120 pairwise coupling 

classifiers were used as features for the second layer. Here, a one-per-class classifier was 

used, where the samples belonging to one class is considered as the positive set while 

those belonging to all the other classes were included in the negative set. The PB having 

the highest number of votes in the output of the second layer was chosen as the predicted 

PB. The major secondary structures like helices or strands were chosen in cases of 

multiple predictions. The prediction accuracy reaches 61%. It was also noted that the PBs 

that are mispredicted were often structurally related to the true PB and these 

mispredictions often correspond to exposed regions of the structure.  

Prediction of PBs is very simple as only a sequence in Fasta format is needed. 

Protein Blocks are the only structural alphabets with web-service for prediction and 

moreover, three different approaches are available. 
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Conclusions and Perspectives 
 

In this paper, we have presented different facets of the protein structures at a local 

level, underlining some limitations of using secondary structures for describing protein 

structures. Global protein structures can be described by a limited set of recurring local 

structures [125] and in this context, the use of structural alphabets is obvious. As it is not 

easy to build relevant structural models directly with structural prototypes, I-sites have 

been added to a prediction method, namely Rosetta [126]. 

Recently, Dong and et al. developed a set of structural alphabets with the aim of 

finding an optimal structural alphabet sequence from which an accurate model of the 

protein can be regenerated [127]. Using the standard k-means algorithm they clustered 

fragments that are seven residues in length, based on the C  RMSD. The set of alphabets 

generated were used to reconstruct the structure of the protein such that the global RMSD 

is minimal. For doing so, they adopted a combination of greedy and dynamic 

programming algorithms. Sets of structural alphabets of sizes 4 to 100 prototypes were 

evaluated for both local and global structure approximations and finally a set of 28 letters 

were chosen. When compared with the global approximation based on PBs, this set of 

alphabets is reported to give slightly better results. Thus, the future of local protein 

structures is promising in the area of building relevant structural models. 

Till this day, nearly all the structural alphabets are only used within the research 

groups that have developed them (see Table 1). Hence, Protein Block structural alphabet 

is an exception. Protein Blocks is one of the most widely used structural alphabet. Indeed, 

it is easy to use PBs for various applications. Protein Blocks have been used both to 

describe the 3D protein backbones [99] and to perform a local structure prediction 
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[91,113,114,116]. The efficiency of PBs have also been proven in the description and the 

prediction of long fragments [67,105,107-111,115,128], to compare protein structures 

[69,102,103], to build globular [127] and transmembrane protein structures [117], to 

define a reduced amino acid alphabet dedicated to mutation design [129], to design 

peptides [130] or to define binding site signatures [131]. The features of this alphabet 

have been compared with those of 8 other structural alphabets showing clearly that the 

PB alphabet is highly informative, with the best predictive ability of those tested [132]. 

Future of structural alphabets is also coupled with the taking into account more 

biophysical feature. One of our main axes of research is so the link between local protein 

structure prediction and the protein flexibility [133]. For this purpose, we have studied 

protein dynamics from two different points of view, i.e., X-ray experiments and 

molecular dynamics (MD) simulations. Prediction results are quite good in comparison to 

available methodologies. 
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Research Team 

Number of 

proteins in 

dataset 

Fragment 

Length 

Distance 

measure 

Learning 

Method 

prototype 

number 

prediction 

 

Unger et al. 4/82 6 Cα RMSD K-means 103 N 

Rooman et al 75 4,5,6, 7 Cα RMSD Hierarchical 

Clustering 

4 Y 

Prestrelski et 

al. 

14 8 Linear  Cα 

disance and α 

torsion angle 

Function of 

Cα disance 

and torsion 

angle 

113 N 

Schuchhardt 

et al. 

136 9 Dihedral angles Kohonen map 100 N 

Fetrow et al. 116 7 C α distance, 

dihedral and 

bond angles 

Auto-ANN 6 N 

Bystroff and 

Baker 

471 3-19 Sequence 

profiles, 

RMSD, MDA 

k-means 13(later 

updated 

to 16) 

Y 

Camproux et 

al. 

100 4 Cα distance HMM 12 N 

Micheletti et 

al. 

75 4,5,6,7 Cα RMSD Iterative 

clustering 

(Monte-carlo 

like) 

28,202,9

32,2561 

N 

de Brevern et 

al. 

342 5 Dihedral angles Unsupervised 

classifier 

(SOM with 

transition 

probabilities) 

16 Y 

Kolodony et 

al. 

145/200 4,5,6,7 Cα RMSD Simulated 

annealing 

based on k-

means 

4-14,10-

225,40-

300,50-

250 

N 

Hunter and 

Subramaniam 

790 7 Hypercosine 

Cα 

Hypercosine 

clustering 

28-16336 Y 

Camproux et 

al. 

250 * 2 4 C α distance HMM 27 N 

Etchebest et 

al. 

1407 5 Dihedral angles Unsupervised 

classifier 

16 
(New 

evaluation) 

Y 

Benros et al. 675 & 

1401 

11 Cα RMSD, PB 

based 

Hybrid Protein 

Model 

120 Y 

Sander et al. 1999 7 Cα distance Leader 

algorithm and 

k-means 

28 Y 

Tung et al. 1348 5 κ and α angle Nearest 

Neighbor 

Clustering 

23 N 

Ku and Hu 18 5 Dihedral angle SOM & k-

means 

18 N 

Bornot et al. 675 & 

1401 

11 Cα RMSD, PB 

based 

Hybrid Protein 

Model 

120 Y 

Yang 268 5 Cα distances 

and angles 

Shape object 

clustering 

27 N 

Table 1. The different sets of structural alphabet. 
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(a)   secondary structures  

    -helix 310 helix -helix turn coil -strand freq PB 

P
ro

te
in

 B
lo

ck
s 

a 0.14 0.13 0.00 19.35 62.64 17.74 3.92 

b 0.13 0.10 0.00 58.38 25.84 15.54 4.16 

c 0.00 0.01 0.00 13.51 43.83 42.65 7.93 

d 0.00 0.00 0.00 5.42 21.77 72.81 18.28 

e 0.05 0.18 0.00 9.15 38.51 52.11 2.36 

f 0.01 0.01 0.00 7.67 66.36 25.96 6.52 

g 4.56 7.83 0.00 52.76 29.67 5.18 1.10 

h 0.27 2.54 0.00 62.35 16.66 18.17 2.30 

i 0.24 2.08 0.00 84.33 7.63 5.72 1.79 

j 4.55 5.34 0.00 59.58 21.35 9.18 0.79 

k 35.21 13.69 0.02 43.98 6.34 0.76 5.41 

l 44.90 17.24 0.02 31.14 6.13 0.57 5.38 

m 86.37 4.51 0.07 6.42 2.51 0.12 31.50 

n 64.02 7.41 0.14 24.26 3.49 0.69 2.17 

o 23.08 6.45 0.02 66.30 3.87 0.28 2.86 

p 4.05 12.37 0.00 62.87 18.91 1.81 3.53 

         

         

(b)   secondary structures  

    -helix 310 helix -helix turn coil -strand  

P
ro

te
in

 B
lo

ck
s 

a 0.02 0.12 0.00 3.67 12.57 3.19  

b 0.02 0.11 0.00 11.74 5.49 2.96  

c 0.00 0.02 0.00 5.18 17.78 15.52  

d 0.00 0.02 0.00 4.79 20.34 61.04  

e 0.00 0.11 0.00 1.04 4.64 5.63  

f 0.00 0.02 0.00 2.42 22.13 7.77  

g 0.15 2.10 0.00 2.81 1.67 0.26  

h 0.02 1.42 0.00 6.93 1.96 1.92  

i 0.01 0.91 0.00 7.30 0.70 0.47  

j 0.11 1.03 0.00 2.28 0.86 0.33  

k 5.63 18.01 4.44 11.50 1.75 0.19  

l 7.14 22.58 4.44 8.10 1.69 0.14  

m 80.42 34.55 77.78 9.78 4.05 0.18  

n 4.11 3.91 11.11 2.55 0.39 0.07  

o 1.95 4.49 2.22 9.17 0.57 0.04  

p 0.42 10.62 0.00 10.73 3.41 0.29  

freq. S2 33.83 4.11 0.03 20.68 19.56 21.80  

 
Table 2. S2  PBs. (a) (a) Is given the relative frequencies of PBs for each secondary 

structures. (b) The relative frequencies of secondary structures in each PB. In bold are the frequencies 

more than 10, in italics frequency less than 5%. 
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