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 Abstract  
Ligand-protein interactions are essential for biological processes, and precise 

characterization of protein binding sites is crucial to understand protein functions. 

MED-SuMo is a powerful technology to localize similar local regions on protein 

surfaces. Its heuristic is based on a 3D representation of macromolecules using 

specific Surface Chemical Features associating chemical characteristics with 

geometrical properties. MED-SMA is an automated and fast method to classify 

binding sites. It is based on MED-SuMo technology, which builds a similarity graph, 

and it uses the Markov Clustering algorithm. 

Purine binding sites are well studied as drug targets. Here, purine binding sites 

of the Protein DataBank (PDB) are classified. Proteins potentially inhibited or 

activated through the same mechanism are gathered. Results are analyzed according 

to PROSITE annotations and to carefully refined functional annotations extracted 

from the PDB.  

As expected, binding sites associated with related mechanisms are gathered, 

e.g., the Small GTPases. Nevertheless, protein kinases from different Kinome families 

are also found together, e.g., Aurora-A and CDK2 proteins which are inhibited by the 

same drugs. Representative examples of different clusters are presented.  

The effectiveness of the MED-SMA approach is demonstrated as it gathers 

binding sites of proteins with similar Structure-Activity Relationships. Moreover, an 

efficient new protocol associates structures absent of co-crystallized ligands to the 

purine clusters enabling those structures to be associated with a specific binding 

mechanism. 
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Applications of this classification by binding mode similarity include target 

based drug design and prediction of cross-reactivity and therefore potential toxic side 

effects. 

Introduction 

The use of the protein sequence is the simplest approach to infer by analogy a 

protein function, e.g., PSI-BLAST [1]. In this research area, PROSITE is a recognized 

method, distinguishing protein family members from unrelated proteins [2, 3]. 

PROSITE patterns represent conserved motifs such as binding site regions. The 

PROSITE database scans sequences from the annotated UniProtKB / Swiss-Prot 

database [4, 5] and detects functional domains. Numerous other approaches exist, 

such as Pfam which uses a refined database of well-characterized protein domain 

families [6, 7]. The development of so many methods has led to the creation of meta-

servers that measure consensus across multiple approaches, e.g., JAFA [8]. 

Functional protein properties can also be characterized in terms of three-

dimensional (3D) structural information. This provides valuable information for 

determining and understanding precise mechanisms of proteins implicated in diseases 

[9-11]. The combination of knowledge from 3D protein structures with hundreds of 

thousands of small-molecules can be used for structure and ligand-based drug design 

[12-17]. For example, Crespo and Fernandez used the protein structure of a imatinib-

resistant mutant [18] to improve the anticancer drug by promoting stronger 

intermolecular non-bonded interactions than those bound by the original drug. In the 

same way, the resolution of the HIV-1 reverse transcriptase complex structure 

explained the potential application of anti-HIV drugs against resistance mutations. It 

also provided opportunities for understanding, with greater accuracy, inhibitor–
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protein interactions and to determine reliably the structural effects of resistance 

mutations [19]. 

The Protein Data Bank (PDB [20, 21]) gathers today more than 59000 protein 

structures. About 3000 protein structures are not associated with a function. Proteins 

can be classified according to their folds [22-24], e.g., SCOP (Structural 

Classification of Proteins) [25, 26]. From simple structural classification of protein, 

these methods have become useful tools to infer protein structures functions and to 

detect functional relationships, e.g. SCOP is now coupled with BLAST, while PSI-

BLAST and RPS-BLAST are associated with Pfam domain search [1, 6, 27], even 

PROSITE motifs are now analyzed in 3D structures [28]. 

However, a limitation of these classifications is their use of complete protein 

folds or protein domains. Similarity of fold does not imply a direct similarity of 

function. For example, the TIM Barrel fold is an alternation of eight -helices and 

eight parallel -strands along with the peptide backbone. It is ancient [29] and shared 

by many different enzymes associated with at least 15 different functions [30]. In 

SCOP, all such proteins are associated with the same cluster. 

It is now established that looking specifically at the protein interactions can 

clarify biological functions, i.e., ligand-protein and protein-protein interactions. 

Ligand-protein interactions are at the basis of many fundamental biological processes. 

It is also known that the activity of a protein is mediated by a small, highly conserved 

set of residues within the binding site [31, 32]. Consequently, being able to detect and 

compare binding sites is valuable for the assignment of predicted structural functional 

annotations.  

During recent years, various methods to compare binding sites have been 

elaborated, based on diverse types of descriptor. The general aim is to create 
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automated functional annotation methods independent from amino acid sequence or 

fold similarity.  

Existing methods share common features. CavBase is based on the use of 

pseudo-centers, i.e., 3D patterns corresponding to chemical properties of amino acids 

at the surface of proteins [33]. It detects related cavities using a clique detection 

algorithm. Site similarity ranking occurs according to property-based surface patches 

shared by the clique solutions. CavBase was used to predict unexpected drug cross-

reactivity among functionally unrelated target proteins [34-36]. CavBase is restricted 

to cavity comparisons. 

Like CavBase, SiteEngine [37, 38] also uses pseudo-centers. In SiteEngine, they 

are gathered into triangles which constitute vertices of graphs. The web version of the 

approach only enables the comparison of a single site versus another protein structure 

[39]. 

Other methods exist, including FLAP [40], CPASS [41] and eF-seek [42, 43]). 

Some enable the automatic creation of 3D motifs associated with binding sites for 

given type of ligands [44] or detect structural similarity to assign E.C. number [43]. 

While others, use the detection of conserved residues to characterise binding sites. In 

this field the Evolutionary Trace method is the most widespread [45-47]. For 

example, it was used to identify residue positions important in diverse GPCRs [48] 

and this method bypasses the need for experimental knowledge of the catalytic 

mechanism [49]. Thornton‟s group maintain the Catalytic Site Atlas (CSA), 

containing assigned catalytic residues, and gives an additional homologous set, with 

annotations inferred by PSI-BLAST and sequence alignment to the original set [31]. 

George and co-workers used the CSA to identify and segregate related proteins into 

those with a functional similarity and those where function differs [50]. ProFunc is a 
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metaserver using both sequence and structure prediction, although it does not provide 

any simple consensus output to use its results [51-54]. Roterman‟s approach is 

innovative. It detects regions of significantly irregular hydrophobicity distribution in 

proteins which appear to be associated with specific functions [55-58]. They propose 

a method to detect binding sites based on the hydrophobic distribution analysis in 

protein structures [59].  

All methods cited above can be used to annotate protein structures. CPASS [41] 

and SiteEngine [37] were presented with examples of functional annotation for 

hypothetical protein structures while CavBase [33] and Gilbert and co-workers [44] 

illustrate their methods by classifying a protein structure dataset. Indeed, these types 

of classification are particularly relevant as they are not based on global fold alone. 

They provide structural functional classifications that can highlight links between 

proteins and that could be a good start for assigning predicted protein functions to 

hypothetical proteins. 

In this research area, SuMo is a powerful technology to match similar local 

regions on protein surfaces [60]. Each chemical interactions of a amino acid residue is 

represented by a pseudo-center, named a Surface Chemical Feature (SCF) (see figure 

1). These are gathered into triangles, the SuMo graph vertices. SCFs have 

heterogeneous geometrical properties, and these triangles have specific formation and 

superimposition rules (distance, angle), so the comparison heuristic is very fast. The 

comparison of a 3D motif against all binding sites of the PDB can be performed in a 

few minutes. The first demonstration of SuMo was the assignment of functional and 

non-functional lectins with a selectivity of 96% [61]. MED-SuMo is the latest 

evolution of the SuMo software developed by MEDIT [62] [63] [64]. Recent 

developments have improved the binding sites database, and functional annotation 
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functionalities are now integrated. Hydrophobic chemical features were added to the 

SCF dictionary and a cavity-detection algorithm included,  improving MED-SuMo's 

effectiveness for detecting unknown binding sites.  

Here, we use MED-SuMo to detect and characterize local similarities for the 

purpose of classify binding sites. This extension is known as the MED-SuMo Multi 

Approach (MED-SMA). A complete dataset of purine binding protein structures was 

collected and classified using MED-SMA. Different clusters were generated. Their 

characteristics and their distributions across different annotations, e.g., PROSITE, 

ligand distribution, functional annotations, were analyzed. MED-SuMo is able to 

group protein binding sites with the same or with related functions, i.e., sites which 

binds similarly related ligands. However, with purine binding sites, what is interesting 

is how drugs can be developed to activate or inhibit the protein function on which 

they are located.  

In this study, we present the classification of all purine binding sites of the PDB 

and demonstrate a method to enrich the clusters with purine binding protein structures 

not co-crystallized with any ligands. Protein kinase distribution in the clusters is 

analyzed in the discussion section.  

 

Results 

Distinct functions can be underlined by the fact that two proteins interact 

differently with the same class of molecules. MED-SuMo can differentiate these 

proteins‟ binding sites. For example, no structural or functional similarities are 

detected between an actin protein bound to ATP (PDB code: 1S22) and a myosin 

protein bound to ATP (PDB code: 1FMW) [60, 61, 63, 64]. The classification tool 

MED-SMA was implemented to use this ability to classify datasets of binding sites 
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[63]. It operates through three main steps: (i) comparison of all the binding sites of a 

dataset using a pairwise comparison system, (ii) detection of matching regions in the 

binding sites to build a similarity graph, and (iii) classification of this graph with the 

Markov Clustering algorithm (MCL) [65]. This clustering algorithm detects densely 

populated regions of the similarity graph associated with highly scored matching 

regions and gathers the similar sub-sites into clusters. Figure 2 illustrates the overall 

procedure and specific details of the heuristic are provided in the Material and 

Methods section. 

 

Purine binding sites classification.  

Purine binding proteins structures were selected from the PDB. Ligands all 

contain either adenosine or guanosine: AXP (ATP, ADP, AMP, ANP and NAD) and 

GXP (GTP, GDP, GMP, and GNP) which only differ by two chemical groups while 

NAD and AXP differ on the phosphoryl side. The 2229 selected protein structures 

contain 2322 purine binding sites which were used to create the same number of 

MED-SuMo graphs. The classification required 4 hours on a bi-Xeon QuadCore 5335 

machine, 3.5 hours for the pairwise comparison step and 30 minutes for the MCL 

classification. 247 clusters were created (see supplementary materials 1 and 2). These 

comprise 2115 binding sites, leaving 207 singletons associated with no binding site of 

the database. Each singleton is eliminated at the “patch merging” step represented on 

figure 2.2b of the MED-SMA procedure (see Material & Method part). 

 

Global analysis. 60% (148) of the clusters have fewer than 5 binding sites, 25% 

(62) have between 5 and 10 binding sites, and 5% (14) have more than 30 binding 
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sites (see supplementary material 3a). Thus, small clusters are important in quantity, 

but there is a notable distribution of larger clusters.  

Ligands within the classified binding sites were analyzed. In table 1a, the 

number of times a ligand is found at least once in a cluster is shown. Even if purine 

ligands are very similar, many clusters contain only one type. For instance, 82 clusters 

contain only ATP, 42 clusters have ATP and ADP and 8 have ATP and NAD. Thus 

for the AXP ligands, about 41% to 50% of their clusters contain just one type. These 

frequencies increase to ~60% for GTP and GMP clusters. Despite the fact that their 

structures are very similar, only 3 clusters contain both ATP and GTP. This highlights 

the specific binding modes of those ligands. For the clusters containing several ligand 

types, the nucleotide is often the same (Adenine or Guanine). Table 1b shows the 

same information as table 1a except the ligands are grouped into 3 classes: AXP, GXP 

and NAD. This table highlights the true diversity observed in the classification. 83% 

of the AXP clusters contain only AXP ligand, 71% of GXP clusters only GXP and 

70% NAD clusters only NAD. The association of NAD and GXP is never observed 

whereas 30% of the NAD ligand clusters also contain AXP ligands. Nearly 17% of 

AXP clusters are found with NAD and GXP ligands. 

 

PROSITE annotation in clusters. 296 different PROSITE patterns are 

associated with the proteins of the clusters. The pattern association is based on PDB 

identifiers. Therefore, as the chain corresponding to a pattern may not be the one 

where the purine binding site is located, manual checks were performed. 30% of the 

MED-SuMo clusters (74/247) are not associated with any defined pattern, while 28% 

(70/247) are associated with only one pattern and 3% (10/247) with more than five 

(see supplementary material 3c upper part). The last category includes two types: the 

large sized clusters, e.g., the clusters 40 and 157 which respectively contain 402 and 
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60 binding sites and are functionally very heterogeneous. The second type is clusters 

where structures are associated with many PROSITE patterns, e.g., cluster 105 

gathers 70 binding sites from actin structures, and is functionally a very homogeneous 

cluster. Indeed, 93% of the structures are associated with the three accession numbers 

of pattern PDOC00340 (PS00406, PS00432 and PS01132) while some structures are 

also associated with other patterns. For example an actin-DNase complex (PDB code 

1ATN) [66] is associated with two accession numbers of pattern PDOC00711 

(PS00919 and PS00918) due to the DNA complex chain. For most of the PROSITE 

annotated clusters, a common pattern is shared by a majority of binding sites. Some 

other patterns may be present but only because other chains are co-crystallized in the 

PDB structures. 

More than 190 PROSITE accession numbers are specific to only one cluster (see 

supplementary material 3c, lower part). 61 are found in two clusters. Furthermore, 

seven accession numbers are found together in more than five clusters. The first three 

are from the protein kinase pattern PDOC00100; PS00107: a protein kinase ATP-

binding region signature, PS00108: a serine/threonine protein kinase active-site 

signature and PS50011: protein kinase domain profile. In the classification, 61 of the 

protein kinase are associated with these 3 accession numbers which are in five 

different clusters. A careful analysis of the protein kinase in the different clusters is 

provided later in this discussion. A clear observation is that patterns associated with 

protein kinase are always found together in the clusters. 

 

Functional annotation in clusters. Precisely defining the function(s) of protein 

structures is a complicated task. Using the MOLECULE field of the PDB files, 

functional annotations were extracted for all the structures of the dataset. These 
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assigned functions were subjected to extensive manual checks. The dataset collects 

442 different functions. In this paragraph, a protein function is associated with a 

functional annotation extracted from the PDB files. The appraisal of the functional 

homogeneity in the clusters was made using the Neq index (equivalent number of 

states, presented in [67] and demonstrated in [68]). This index is based on the 

Shannon entropy [69] and it gives an indication of the number of states (here 

functions) and their distribution within a cluster. For instance, if two functions each 

represent 50% of a cluster, the Neq equals two, if one represents 90% and the other 

10%, the Neq is worth 1.13. The Neq equals 1 if only one function is observed in a 

cluster. 

163 clusters are associated with only one function. About one third contain at 

least two functions. 12% of the clusters (29) have a Neq value equals or greater than 2 

(see supplementary material 3d). Some clusters gather an important number of 

different functions (examples are presented below). As expected, the mean of the Neq 

generally increases with the cluster size (see supplementary material 3e). However, 

there is no strong correlation. Small clusters have low Neq, but several big ones also 

have low Neq (see supplementary material 4). Eight clusters have a Neq greater than 5, 

some are analysed in the following paragraphs. 

MED-Sumo Cluster 4. The Neq equals 14.92 indicating it is a very 

heterogeneous cluster. It contains 27 different functions. Mostly, they are epimerases, 

dehydratases and dehydrogrenases, e.g., hydroxysteroid dehydrogrenases, the cluster 

binds NAD except protein Arna (PDB code 1Z7E [70]) which binds ATP. Figure 3 

shows a 3D superimposition of a dTDP-D-glucose 4,6-dehydratase (PDB code 1KEP 

[71]) with four binding sites from cluster 4. The top-left hand figure; with UDP-

Glucose-4-epimerase (PDB code 2P5Y), shows a very good and complete 
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superimposition. Pairs of SCFs are all around the ligands, i.e. the binding sites have a 

strong similarity. The top-right hand one represents the superimposition of the 

nicotinamide binding site of 1KEP with a GDP-Mannose-4,6-Dehydratase (PDB code 

1RPN [72]). Interestingly, the ligand is globally well superimposed, with only a small 

shift. However, a more detailed analysis yields the fact that pairs of SCFs are only on 

the bottom left region of the binding sites. Figure 3 shows that only sub-sites are 

similar while the other side (top-right) is different. On the bottom left hand 

representation, the binding sites superimposition enables the overlap of the ligands 

NAD (from 1KEP) and ATP from the Arna protein binding site (PDB code 1Z7E) on 

their common regions (adenosine). The other side of the ligand is quite different as 

the left hand background of the binding site remains similar. This region of the 

binding site is highly conserved for all four proteins (1KEP, 2P5Y, 1RPN and 1Z7E). 

Since this classification method is able to group binding site with similar sub 

pockets, we notice that this cluster is due to the left hand background sub pocket 

which is shared by functionally different proteins. This cluster also contains a protein 

annotated as “hypothetical protein” (code PDB 2D1Y). A recent study showed how 

MED-SuMo could help establish potential functions of proteins [64]. Here, a function 

corresponds better with a functional mechanism used by the protein to express its 

function. Superimposition of this protein‟s binding site with other binding sites from 

cluster 4 clearly illustrates a local similarity. The adjacency with the binding mode of 

the dTDP-D-glucose 4,6-dehydratase is illustrated in figure 3d (bottom-right hand 

picture). More than ten pairs of SCFs are detected whereas the best sequence match 

found by PSI-BLAST [1] using the SWISSPROT databank [73], has a sequence 

similarity score of 35%. This match is a 3-oxoacyl-[acyl-carrier-protein] reductase 

(SWISSPROT code Q9X248). Analysis of SCOP ids associated with each cluster 
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shows various behaviours. Here, all the proteins belong to SCOP family of Tyrosine-

dependent oxidoreductases (c.2.1.2). Thus, proteins of this cluster have related folds; 

however, a weak sequence identity rate (15.4%) is calculated. It underlines clearly 

that our approach merges related local folds without regards to the sequence 

similarities, i.e., the local 3D similarity of the protein interaction site directs the 

clustering.  

 

MED-Sumo Cluster 33. The Neq value is 8.53. However, the first observation is 

that the different functions of this cluster are linked to the transport through 

membrane, e.g., cystic fibrosis transmembrane conductance, ABC (transmembrane) 

transporter. The co-crystallized ligands are homogeneous as only AXP ligands are 

present, mainly ATP and ADP. The common region is the phosphoryl part. Figure 4a 

shows the ligand superposition. It emphasizes that the binding similarities of the 

active sites cannot be around the nucleotide part as their positions are very different. 

The SCFs are mainly located around the phosphate groups. Some are also around the 

nucleotide part but as there are 25 superimposed SCFs pairs on the phosphoryl part, 

there are only 9 on the nucleotide part. Figure 4b shows the superimposition of 6 

ligands from 6 proteins associated with different functions, i.e., histidine permease 

(PDB code 1B0U [74]), maltose / maltodextrin transport ATP-binding (PDB code 

1Q12 [75]), cystic fibrosis transmembrane transductance (PDB code 1R0X [76]), 

multidrug resistance-associated protein (PDB code 2CBZ [77]), -hemolysin 

translocation ATP-binding protein HLYB (PDB code 2FF7 [78]) and peptide 

transporter TAP1 (PDB code 1JJ7 [79]). Four of them are co-crystallized with ATP 

and two with ADP. Figure 4b gives another example of how similarities detected by 

MED-SuMo can concern only a part of a binding site. The SCFs circled in white 
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highlight MED-SuMo‟s flexibility, i.e., superimposition rules are loose enough to 

enable the superimposition in figure 4b; both SCFs represent the same chemical 

propriety and they are oriented in a very similar direction, however, the separation 

distance is large (0.5 Ǻ).  

The fact that many functions are in this cluster underlines that the binding of a 

phosphate ligand is not specific to one type of function. It is very common for the 

mechanism of transport through membrane proteins to require the energy of the 

phosphate transfer. Here we can say that despite the fact that there are many functions 

in that cluster, all proteins structures use a similar binding mode, characterized by 

MED-cluster 33. As for the previous presented cluster, here also, these proteins 

belong to the same SCOP family, ABC transporter ATPase domain-like (c.37.1.12). 

As previously observed, they also share a low sequence identity rate (26.2%). Figure 

4 shows the methodology can highlight that the common binding part of this family is 

on the phosphate side of binding site, and is directly linked to function. 

 

Other examples. MED-SuMo cluster 40 has the highest Neq, 53.36. It is also the 

biggest cluster of the classification with 402 binding sites from 386 proteins. It 

includes 279 Small GTPase (72% of the cluster), in fact, all the Small GTPases of the 

dataset, 40 “Elongation Factor 2” (10%): all the Elongation Factor 2 of the dataset. 

The high Neq comes from the 18% remaining; these proteins encompass a large 

number of functions which share the same mechanism, and interact with GXP ligands. 

This cluster is associated with a huge SCOP superfamily (c.37.1) corresponding to 

different families, mainly c.37.1.8 (80%), but also c.37.1.10, c.37.1.1, c.37.1.20 and 

c.37.1.4. Some proteins have no SCOP ids, but based on CATH classification, they 

can be considered as members of this superfamily. The important region of this 
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binding site is, as for MED-SuMo cluster 33, the phosphate side. Hence, our analysis 

underlines this similar behaviour for proteins from the same SCOP family. But, it also 

highlights that sites from MED-SuMo clusters 33 and 40 are clearly distinct, the first 

one corresponding to one superfamily and the second to four distinct superfamilies. 

A few highly populated clusters also have low Neq value. For instance, cluster 

159 has a Neq value of 1.74 and it contains 28 binding sites all from HSP70 proteins. 

In reality, its Neq should be 1; but HSP70s are sometimes annotated differently. This 

verifies the fact that MED-SuMo is able to gather proteins with the same function. 

Cluster 105 has a Neq equals to 1.07 whereas it contains 70 binding sites. This cluster 

includes all actins of the dataset. These proteins all bind AXP and have very specific 

binding modes.  

In summary, MED-SMA, generates different types of cluster, some functionally 

very diverse while others functionally very homogeneous. Proteins with different 

functions that are in the same clusters; for example the small GTPase in cluster 40, 

can share related inhibition processes. Another example concerns the actin family, all 

actin proteins are in the same cluster; molecules with specific binding modes are 

needed to inhibit or activate them.  

 

Links between clusters. Two clusters are linked if they both contain a site 

inherited from the same binding sites. A part of a binding site can be related to a 

protein family and another part to another protein family. Under a certain fraction,  

(here, parameter covering_factor: 60%) overlapping SCFs are considered as part of 2 

separate sub-sites. They reflect binding site flexibility.  
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Figure 5 shows an interesting network of clusters where cluster 40, the biggest 

cluster of the classification, is in the centre (see supplementary material 2). This 

network implies eleven clusters and it can be divided into 2 parts: 

The upper part involves 5 clusters, each related to the biggest, cluster 87 which 

is connected to cluster 40: cluster 70 (Neq=1.6, size=5), cluster 69 (Neq=1.0, size=2) 

and cluster 78 (Neq=1.0, size=2) are adenylate kinase clusters. Adenylate kinases are 

phosphotransferase enzymes that catalyze the interconversion of adenine nucleotides. 

They play an important role in cellular energy homeostasis [80]. Cluster 87 (Neq=6.5, 

size=56) also contains adenylate kinase, but also more diverse functions. Different 

nucleotide kinases are present, e.g., thymidylate kinase or uridylate kinase. 

Nevertheless, all those structures are from enzymes that catalyze the phosphate 

transfer from ATPs to the 5' end of nucleotides. Cluster 176 (Neq=2.3, size=16) 

contains other nucleotide kinases, e.g. deoxycytidine kinase (68%). Interestingly, 

these are not natural nucleotides. For example, the human deoxycytidine kinase is 

responsible for the phosphorylation of a number of clinically important nucleoside 

analogue pro-drugs [81]. 

The lower part of the network incorporates 6 clusters, all connected to cluster 40 

except cluster 113. Cluster 138 (Neq=1.0, size=2) is a GTPase cluster. Cluster 228 

(Neq=1.0, size=1) is a conserved active site with residues in the GTPase domains 

common to both signal recognition particle and conjugate receptor [82]. Cluster 28 

(Neq=1.9, size=3) is small cluster of DNA polymerase III. The DNA polymerase III 

holoenzyme is the first enzyme complex involved in prokaryotic DNA replication 

[83]. Cluster 112 (Neq= 1.0, size =15) gathers Heat shock locus (HSL) proteins (87%), 

a DNA polymerase III and CLP protease proteins. HSL and CLP have chaperone 

activities, being implicated in the formation of protein complexes. Cluster 245 
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(Neq=5.9, size=33) is a heterogeneous cluster that gathers mostly F1 Atpase, with 

RecA proteins and even a myosin protein. More interestingly, a hypothetical protein 

from Aquifex aeolicus (O67745_AQUAE), is associated with this cluster [84]. 

The thirteen links are represented figure 5. Cluster 40 is connected to 5 clusters, 

(e.g., cluster 87), cluster 70 to 3 clusters, 5 other clusters have two links and the 3 

remaining, only one. All links can be illustrated with superimposition using the MED-

SuMo 3D viewer. Figure 6 illustrates 2 links between 3 clusters: Cluster 245, 40 and 

28. Hence, we selected 3 protein structures (PDB codes 1UM8 [85], 1SXJ [86] and 

1XXI [87]). A very low sequence identity is found between the different sequences 

(4.4%). Thus, as expected, the global structures are quite different (see figure 6, left). 

However, figure 6 (right) shows that local similarity is important. The ligands, one 

ATP and two ADP, are closely superimposed. The bottom parts of the 3 binding sites 

are very similar which is highlighted by several SCFs. However, the reason why these 

proteins are not in the same cluster is that the similarities are only local; only SCFs on 

the bottom of the binding sites are well superimposed. This underlines a sub-pocket 

similarity which could lead to the fact that this part of the binding site could interact 

with the same binding modes.  

 Classification enrichment. 

Nonetheless, a crucial question is if the protein structure has no purine ligand 

bound, can MED-SuMo still identify the purine ligand binding property of the 

protein? Using the ExPASy website for PROSITE, proteins with a purine binding 

patterns were selected. Since PROSITE highlights interesting regions of the protein 

sequences, binding sites are not always structurally defined with a ligand. The nine 

purine ligands were used as queries to get a protein structure list. 3515 structures were 

collected, of which only 880 were common to the classified PDB dataset. 1492 are co-
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crystallized with non-purine ligands while 1143 are not co-crystallized with any. In 

these 3 subsets, we chose to associate the 1143 apo-structures to one of the 247 

clusters. For this purpose, a particular MED-SuMo mode was used, it enables the 

comparison of whole protein surfaces to every purine binding site already classified 

(2115). Two filters were applied to ensure the quality of results from this strategy: (1) 

a high MED-SuMo score (value 5.5) and (2) a value of covering_factor equivalent to 

the one used in the MED-SMA merging step (see figure 2.2c) of 0.6. This value 

ensures at least 60 % of the SCFs are in common with the corresponding binding site 

of the cluster. 

When applying the first filter only, clusters would be enriched by 1038 potential 

new binding sites associated with 567 of the 1143 structures without ligands (~50%). 

With the second filter, clusters are enriched by 203 potential binding sites issued from 

196 protein structures. Here, seven structures are associated with more than one 

cluster. A single protein structure can have several purine-binding sites, and a protein 

structure can be associated with two linked clusters. For instance, the human tyrosine 

kinase c-Src (PDB code 1FMK [88]), not co-crystallized with any ligands, can be 

associated with two protein kinase clusters, clusters 157 and 211.  

56 clusters are expanded in this protocol. Cluster 40, the biggest, gains 19 

binding sites from 19 structures (from SCOP c.37.1.8 and c.37.1.10 families as the 

rest of the cluster). Protein kinase clusters 157 and 211 are, respectively, enriched by 

26 and 9 of those apo-structures. It can be noted that at least 371 other structures have 

high similarities with purine binding sites, but were discarded by these very stringent 

parameters. A closer study could determine whether they should be included in the 

clusters or not, some being clearly positive hints. 
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Discussion 

Methods to compare binding sites. The detection of functional sites on protein 

surface is important for the identification of biological activity. Most protein 

structures are implicated in, at least, one ligand-protein interaction, and they are 

implicated in the majority of critical biological processes. However, without known 

related sequences or structures their detection is difficult [89]. Innovative novel 

approaches have been proposed, i.e., the use of hydrophobicity distribution on protein 

structures using the fuzzy oil drop model [59], the destabilization of limited protein 

regions [90], phylogenomic classification of protein sequences [91] or the 

classification of known protein catalytic sites [92]. Prediction of protein functional  

sites is an important step in identifying small-molecule interactions for drug 

discovery [93] and to optimize the drugs targeting these sites [94]. Another valuable 

application is as a pre-processing step to reduce search space for rigorous 

computational docking algorithms. 

Methods to compare binding sites have been developed using various kinds of 

structural descriptors, e.g., CavBase uses pseudo-centers, and the strong hypothesis 

that chemical similarity and activity are linked [95]. In this field, MED-SuMo is an 

efficient approach based on Surface Chemical Features (SCFs). Each SCF represents 

a pertinent chemical property and is described with appropriate geometric rules. The 

search of equivalent binding sites is performed by detecting similar graphs where the 

vertices represent triangles of SCFs. The specific geometric rules of each SCF enable 

the heuristic to be fast. So, MED-SuMo offers an interesting and original approach to 

detect structural and functional similarities between protein binding sites. 

Here, it is applied in a clustering approach where ligand environments are 

classified. An application to a particular protein family, the purinome, is presented. 
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AXP, NAD and GXP are simple ligands composed with related nucleotides and 

phosphoryl groups. Nevertheless, they are quite flexible and can adopt very different 

conformations within a binding site [96]. 

Direct comparison with other classification methods is difficult. Nebel and co-

workers report a method to automatically generate 3D motifs from protein structure 

binding sites based on consensus atom positions and evaluate these with a set of 

adenine based ligands [44]. Their methodology was validated by generating 

automatically 18 different 3D patterns for the main adenine based ligands. Our study 

encompasses a larger set of proteins. The different classes presented in this study are 

found again by MED-SMA. Nonetheless, the classification has some differences. 

Hence, concerning the ADP4 pattern example (see figure 3 of [44] and associated 

text), three proteins of ADP4 out of five (PDB code 1EHI, 1E4E, 1GSA, 1KJQ and 

1IAH) are associated with the same MED-SuMo cluster number 5 (PDB code 1EHI, 

1E4E, 1KJQ). For two proteins (1GSA and 1IAH), they are associated with other 

clusters. In these cases, the common pattern is on the adenine binding region. The 

remainders of both datasets are quite different. Each cluster was systematically 

analysed in terms of PROSITE and SCOP ids distribution, and of sequence identities. 

 

Classification of purine binding sites. The classification of all the co-

crystallized binding sites of our dataset generates 247 distinct clusters. The clustering 

is quite robust as an average number of 48 SCFs are found in each sub-sites. They are 

mainly H-bond interactions SCF. An average of more than 80% of the binding sites‟ 

SCFs, are found in the sub-sites. Interestingly, numerous clusters consist of binding 

sites linked to various kinds of ligands. However, even if AXP and GXP only differ 
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by two chemical groups and NAD and AXP have a region strictly similar, most of the 

clusters are specific to one or another.  

An extensive and difficult manual annotation of the protein structures was also 

undertaken, based on a specific PDB field. This functional annotation shows that one 

half of the clusters are associated with only one function and 12% with more than 

two. The main reason is that purine binding sites are not specific to the function of the 

protein but are related to an activation/inhibition mechanism. Binding sites in the 

same clusters could be targeted by similar drug molecules. We have presented and 

carefully analyzed examples of the eight clusters with high Neq. Cluster 40 has the 

highest Neq (53). It contains binding sites from 279 Small GTPase, and is associated 

with almost a hundred different functional annotations. However, interestingly it 

comprises all small GTPases of the dataset, all sharing the same functional (inhibition 

and activation) mechanism through the binding of phosphate side of the purine ligand 

and the P-loop. SCOP superfamily c.37.1 is well represented here by SCOP family 

c.37.1.8. The presentation of links between clusters emphasizes the complexity of this 

approach. Indeed, a link is represented by a binding site for which constituent sub-

sites are found in two different clusters. A region of a binding site is found in one 

cluster and another region is in another one, potentially, slightly overlapping (the 

overlapping must be less than the covering_factor threshold). This property is not 

only a difference due to protein flexibility but it is a true distinction in protein binding 

sites which can highlight sub-pocket similarities. 

 

PROSITE patterns. A pertinent result of this study is from the analysis of  

distribution of PROSITE patterns. Even when numerous clusters have some different 

PROSITE patterns, they may remain quite homogeneous as most have redundant 
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common patterns or related patterns. Our work also extends the creative works of 

Kasuya and Thornton made on the 3D-structure analysis of PROSITE patterns [97]. 

They found numerous PROSITE patterns with common three-dimensional structure 

characteristics which could be used to create templates defining 3D functional 

patterns. Wu and co-workers [98] recently improved on a previous study [99] 

showing that 3D information is significantly more relevant than PROSITE patterns. 

Our work suggests that common and distinct characteristics can be associated with a 

given pattern and that distinct patterns share common local features. In the same way, 

our analysis highlights the interest in enriching PROSITE annotations for related 

protein sequences and structures. Indeed one third of proteins from our dataset are not 

annotated with PROSITE patterns. We have also demonstrated that this binding site 

classification can be further enriched by apo-structures. Indeed, MED-SuMo can be 

used to first detect their binding sites and then SCFs signature can be compared to 

those within the clusters.  

 

Protein kinase. They play a central role in cell regulation pathways in 

eukaryotes species [100]. As they represent the second largest drug target family for 

pharmaceutical companies, a chemogenomics concept, called kinomics [101] has 

been deeply explored. Although they essentially catalyze the same phosphoryl 

transfer reaction, they are involved with a remarkable number of different substrates, 

structures, and cell pathways. Analysis and classification of protein kinases have been 

made at the genomic sequence level with elegant approaches, such as KinG [102] 

which allowed the identification of novel kinases as in Plasmodium vivax genome 

leading to new classifications. Some kinase studies have combined sequence and 
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structure classification. Inhibition of kinase activities have been treated at the genomic 

level and analyzed with respect to these classifications [103]. 

In 2002, Manning et al. [104] established a standard protein kinase 

classification, the Kinome. This classification is sequence based and it highlights 

seven main families: TK: tyrosine kinase, TKL: tyrosine kinase-like, STE: Homologs 

of yeast Sterile, CK1; Casein Kinase 1, AGC; Protein kinase A, C, G, CAMK: 

Calcium/calmodulin-dependent protein kinase, CMGC: containing CDK, MAPK, 

GSK3, CLK families. An atypical kinase protein family was also described, 

containing all uncategorized kinase proteins. A point of interest in this analysis is the 

distance used in the classification which is solely based on local 3D similarity while 

the Kinome is based on complete sequences. 

In the classification we present, protein kinases are present in seven clusters (46 

(Neq=2.14, size=11), 100 (Neq=2, size=2), 121 (Neq=2, size=2), 155 (Neq=1.96, size=5), 

157 (Neq=17.71, size=60), 183 (Neq=6.41, size=21), 211 (Neq=11.29, size=23)). The 

analysis of the populated clusters (size>5) highlights particular aspects of the 

classification:  

The most homogeneous cluster of this particular analysis is the MED-cluster 46. 

However, it does not contain only one type of kinase: 9 proteins are from the AGC 

and one from PTK family.  

Cluster 211 has a high Neq but a more detailed analysis shows that it is very pure 

cluster with respect to the Kinome classification. Almost all its binding sites are from 

two branches of the kinome tree, the PTK and CMGC. Only one other protein is from 

another small distinct branch between PTK and CMGC (PDB code 2A19 [105]). 

Other members of this kinome family are also found in cluster 157. 
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Cluster 157 has a high Neq value, and 59 out of 60 binding sites are from protein 

kinase. However, they are from 3 different Kinome families (CMGC, TK and 

CAMK) and from one atypical. Even if their sequences are different (which is why 

they are in 3 distinct families), their ATP binding sites have strong local structural and 

functional similarities detected by MED-SMA. To understand the disparity of the 

protein kinase families in this cluster, the ATP binding site of a cell division kinase 2 

(CDK2, PDB code 1B38 [106]) from the CMGC family was compared with the 

remainder of cluster 157 using MED-SuMo. Figure 7 represents the 35 first hits of 

this MED-SuMo analysis. The first observation is that all CDK2 of the dataset are 

found by MED-SuMo (dark blue). The second observation is that protein kinases 

from the same family (CMGC) are also in the hit list (light blue). With only 23.54 % 

sequence identity, CDK2 and glycogen synthase kinase 3-BETA (GSK3β) are 

gathered the same kinome family (CMGC). A SAR study on protein kinase structures 

available in the PDB in 2004 [101] found similarities between activities of proteins 

from those 2 families. MED-SuMo detects local structural and functional similarities 

and MED-SMA classifies them in the same cluster. It underlines the functional 

interest of our classification approach. The final point concerning this cluster derives 

from the observed presence of other colours shown in figure 7: PTK (green), CAMK 

(pink), TKL (grey) or atypical protein kinase (light red). The ANP binding site of a 

protein tyrosine kinase, Aurora-A (PDB code 2DWB) has higher score than some of 

the CDK2. Thus, the binding sites of 2DWB and 1B38 are more similar than 1B38 

and other CDK2s (e.g. τ-protein kinase I: PDB code 1J1B [107]). This highlights 

surprising structural and functional similarities between a CDK2 and a aurora-A 

tyrosine kinase whereas they are not in the same kinome family. An experimental 

study realized by Pevarello et.al. show that CDK2 and Aurora-A activities can be 
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inhibited by the same molecule classes; 1,4,5,6-tetrahydropyrrolo[3,4-c]pyrazoles 

[108]. If they bind the same types of molecules, it implies that they are inhibited or 

activated by the same drugs, sharing binding modes of those molecules. MED-SMA 

clearly highlights this same fact by showing similar structural and functional 

properties gathered at those binding sites in the cluster.  

The final remark on protein kinases concerns the enrichment protocol results. 

Many clusters have increased their number. For instance, cluster 157 and cluster 211 

are respectively both enriched by 26 and 9 apo-protein structures. Hence, protein 

kinases sharing other types of ligand might also be associated with MED-clusters if 

the rest of the PROSITE dataset had been added to this enrichment protocol. 

Classification of datasets, with or without ligands, follow similar rules. Thus, the 

classification of protein kinases is often quite similar to the Kinome described by 

Manning and co-workers [104], which is logical as related sequences share functional 

similarities. Nonetheless, some striking exceptions are grouped in the same cluster, 

protein structures from different part of the Kinome. This is also logical as MED-

SMA clusters local 3D surface similarities and not sequences. Moreover, 

experimental results support these associations, reflecting functional similarity across 

the Kinome.  

 

MED-SMA utility. This type of relationship between families is very interesting 

and their detection is a direct application for MED-SMA. In this classification, we 

chose to fix a high MED-SuMo minimal score, (5.5 corresponding to at least 10 

superimposable SCFs) in order to obtain functionally pure clusters. Other potential 

uses for this classification method are: deduction of enzymatic mechanism of poorly 

studied or newly discovered proteins, or in other cases, protein function deduction. 
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Thus, we can validate the assertion that functions can be assigned to unknown 

proteins by finding which cluster(s) are best matches for the concerned structures. 

Matching to clusters rather than single structures will diminish a significant amount of 

the noise. All described applications are based on a potential presence of better known 

binding sites in the same cluster. Other applications are planned, a complete protein 

kinase classification with no ligand type filter. We  are also studying the results of a 

classification of all binding sites of the PDB which is a fairly substantial undertaking. 

 

Link. One last interesting link is observed between cluster 56 (Neq=1.76, 

size=12) and cluster 121 (Neq=1, size=2). Cluster 56‟s main function is DNA 

topoisomerase II while cluster 120 contains a “histidine kinase”. The link is due to the 

presence of a “histidine kinase” in cluster 56. A review [109] outlines the fact that 

similarities are found between diverse ATP binding proteins. In fact, they report that 

histidine kinases are related to the superfamily GHKL ATPase (Gyrase, Hsp90, 

Histidine Kinase and MutL). Other studies report that they are inhibited by the same 

drug, the radicicol. In a previous study [63], MED-SMA underlines these local 

similarities by collecting binding sites from these 4 families into a single cluster and 

illustrates them with a 3D view of their superimpositions around the drug radicicol 

(see figure 8 of [63]).  

 

Conclusions 

This approach is clearly embedded in the structural genomics field. It is fast and, 

as noted by Ferrè et al. [110] functional patches associated with a large collection of 

protein surface cavities can be used to provide functional clues to protein with 

unknown structures. This observation is relevant to the present study. Thus, MED-
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SMA is an approach that may improve the efficiency and effectiveness of early stage 

drug discovery steps, involving the initial lead selection, improving poor leads, or, 

multivariate optimization, as it was used in a previous study [17]. This study 

demonstrates that MED-SuMo is a particularly well suited tool to both annotate 

protein structures and to enable structural functional classification. Finally, its 

effectiveness at dealing with the entire PDB shows that MED-SuMo is well-suited to 

large-scale applications.  

 

Materials and methods 

 Protein structure database.  

The dataset was built using the PDB [20]. X-ray protein structures co-

crystallized with ATP, ADP, AMP, ANP, GTP, GDP, GMP, GNP or NAD were 

extracted. The final PDB dataset contains 2229 protein structures. To avoid a too 

large database, we chose to include only one binding site per type of ligand for each 

structure file. At the end, the MED-SuMo database contains 2,322 binding sites.  

The PROSITE database [3] was also considered as it gathers protein domains, 

families or functional sites through more than 4300 sequence patterns or profiles. 

Each ligand name was used as a query to regroup related PROSITE patterns and 

profiles on the ExPASy website [111]. For example, „ATP‟ is associated with the 

pattern PDOC00017. It corresponds to “ATP/GTP-binding site motif A (P-loop)”. 

The PDB structures containing those patterns or profiles were used to gather a 

secondary dataset of 3,515 protein structures. As most of purine binding proteins are 

not co-crystallized with purine ligands, only 880 protein structures are in both 

datasets.  

http://www.expasy.ch/cgi-bin/nicedoc.pl?PDOC00017
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 MED-SuMo Algorithm.  

MED-SuMo is designed to localize similar regions associated with a defined 

function [16, 60, 61, 64]. Its main advantage is to detect binding sites with similar or 

related binding modes which could not be identified using rigid (or even flexible) 

superimposition approaches. Its heuristic is based on a 3D representation of 

macromolecule structures using precise Structural Chemical Features (SCFs). For 

MED-SuMo, a protein structure is represented by a set of functional groups: unbound 

hydrogen bond (Hbond) donors or acceptors, accessible sides of aromatic rings and 

carboxylate groups, primary amide, guanidinium, hydroxyl, imidazole, thioether and 

thiol groups. Each feature associates its chemical characteristics to precise 

geometrical properties. MED-SuMo comparison methodology (see figure 1) can be 

divided into two major steps: 

(1) The Graph Formation: SCFs are displayed on the protein structure through a 

lexicographic analysis of the atoms in the PDB files, i.e., for each residue type, a list 

of predefined SCFs is specified (see figure 1a). For example, a phenylalanine is 

represented by two H-bond acceptors, one H-bond donor, one aromatic and three 

hydrophobics. Once all SCFs are assigned, their positions and orientations are filtered 

to discard those likely to be involved in intra protein interactions and those too buried 

to interact with a potential ligand (see figure 1). Remaining SCFs are assembled into 

triangles with specific geometric characteristics e.g. edge sizes, perimeter, angles (see 

figure 1c). The triangle network is represented as a graph data structure where 

triangles are vertices and edges connect adjacent triangles. All graphs are stored in the 

MED-SuMo database (see figure 1d).  

(2) The Graph Comparison: To compare two graphs, MED-SuMo detects 

compatible triangles made of compatible SCFs (see figure 1e). Compatible triangles 

are called comparison “seeds”. When a seed is detected, MED-SuMo extends the 
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comparisons to the neighbourhood vertices, until no more similarities are found. This 

list of compatible triangles is then used to create a list of SCFs pairs which are called 

“patches” and which represent the MED-SuMo hits. Those hits are then organized 

according to their score [60] (see figure 1f). Angle tolerance between the pairs of 

compatible triangles enables MED-SuMo to include flexibility in the comparison.  

Comparisons are usually made between a query and a database of precompiled 

graphs. Three kinds of MED-SuMo databases exist: the binding site database made of 

the small protein regions characterized by co-crystallized ligands and small peptides. 

The full surface database which contains whole surfaces of the protein structures and 

the MED-Portions database also containing small protein regions but where 

characterized by chemical fragments detected in the ligands or peptides from the PDB 

[16, 17]. 

The original version of SuMo is available on the internet [61] but the latest 

improvements are only included in the MED-SuMo software distributed by MEDIT 

SA [62]. These improvements concern the definition and conception of protein 

databases and as well as the heuristic itself. One of the most important new features is 

the Graphical User Interface (GUI). Indeed, the MED-SuMo GUI offers a simple, yet 

powerful, front-end to MEDIT's technology. To start a MED-SuMo search, the user 

loads its query protein in a 3D viewer. The binding sites are automatically detected by 

the presence of co-crystallized ligand or peptides. It is possible to either select one 

binding site or to define a manual selection. Once the selection is made, the user can 

launch the search on a one of the three available databases (binding sites, full surface 

or MED-Portions). The hits detected by MED-SuMo are displayed in a result table 

with columns containing the ligand 2D structure, the MED-SuMo score, the SCF 

signature, the RMSD of the corresponding SCF and other features (see figure 8). The 
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protein structures and the co-crystallized ligands can be superimposed in the 3D 

viewer thanks to the transformation matrix calculated by MED-SuMo for each hit. 

 

 Classification of protein binding sites.  

As noted, MED-SuMo has an interesting and original approach to detect 

structural and functional similarities between protein binding sites. Its ability is now 

used to classify datasets of structures and this method is called MED-SuMo_Multi 

Approach (MED-SMA). It operates in three major steps: comparison of all the 

binding sites of a dataset using a pairwise comparison system. Detection of matching 

regions in the binding sites to build a similarity graph and finally, classification of this 

graph with the Markov Clustering algorithm (MCL [65]). Figure 2.1 illustrates the 

global procedure and Figure 2.2 depicts the 6 consecutive steps of the algorithm. 

Algorithm Description. To begin, a list of proteins is selected (see protein 

database paragraph). To build the MED-SuMo database, two strategies can be 

adopted: (i) the database contains all binding sites of the selected proteins, (i.e., 

binding sites where the co-crystallized ligands obey predefined rules including 

maximum (or minimum) number of atoms, number of residues if it is a small peptide; 

(ii) the database contains only specified binding sites, for example, only purine 

binding sites. Once the database is created, the comparison is launched using MED-

SuMo pairwise comparison procedure (see figures 1 and 2.2a). The main parameter at 

this step is the minimal score tolerated by MED-SuMo i.e., score_min. These 

comparisons highlight pairs of compatible SCFs between pairs of binding sites. At 

this step, if binding sites are isolated i.e. they do not match with any other binding 

sites of the dataset; they are considered as the singletons of the classification and thus 

won‟t be included in the clusters (see figure 2.2b). The detected SCF groups are called 
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patches (see figure 2.2c). A binding site can contain several patches which associates 

itself to several binding sites. For each binding site, all of its patches are parsed. If 

two patches from the same binding site share enough SCFs, they are merged in 

multipatch. If two merged patches are associated with two distinct binding sites, the 

multipatch (sub-sites) underlines common SCFs between the considered binding sites 

and the two concerned binding sites. The threshold that defines the number of 

common SCFs needed is the parameter covering_factor. This is set to 0.6, meaning 

that 60% of the SCFs must be shared. A multipatch is a set of SCFs common to 

several binding sites of the dataset; they are named sub-sites in this publication. They 

represent the true meaningful common regions of binding sites. They ensured two 

properties: (i) enough SCFs are in common, i.e., binding sites are structurally and 

functionally related and (ii) they can underline sub-pocket similarity. To compute the 

similarity graph, the MED-SuMo score between matching sub-sites is calculated (see 

Figure 2.2e). At the end, MCL interprets the graph and classifies the protein binding 

site dataset into clusters of sub-sites (see figure 2.2f). A 2D plot of the clusters can be 

visualized using dedicated tools such as Biolayout [112, 113]. 

 

 Classification Analysis.  

A critical question when considering clustering methods is the quality of the 

data association within the clusters. For protein classification, anticipated results are 

different between sequence classifications, structural classifications, and different 

again with functional classifications [103, 114-116]. PDB files have many extractable 

annotations. The HEADER field, for example can give specific information about the 

protein function. However, we used the MOLECULE field as it gives more precise 

information regarding functional annotations of the protein structures. For example, 
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protein kinase (e.g., PDB code 1B38, 1QMZ) are annotated as “TRANSFERASE” in 

the HEADER field, whereas the MOLECULE field specifies “CELL DIVISION 

PROTEIN KINASE 2”. To evaluate the cluster homogeneity, an entropy-derived 

function is calculated for each cluster and then globally for the whole classification. 

This index is named Neq for “equivalent number of states” [69]. It assesses the 

conditional equivalent number of the predicted states given the observed states. In our 

study, it is equivalent to the equivalent number of functions per cluster. First, the 

entropy of the cluster c, H(c), is computed. Then, the Neq is calculated, its expression 

is the exponential of Shannon entropy [117], H(c). 
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Where p(ic) is the probability of the function i in the cluster c, and F is the count 

of observed functions. So, Neq(c) varies between 1 (i.e., only one function in the 

cluster) and F (i.e., each structure function is different). The Neq calculation is made 

on the MOLECULE fields of all the PDB files which were manually checked 

extensively and on which a few manual fixes were made. 

Average sequence identity has been computed for each cluster thanks to 

CLUSTALW software [118]. 

 Classification enrichment.  

Our PROSITE dataset is also composed with purine binding protein structures. 

It contains 3,515 structures of three types: 1,492 are not co-crystallized with purine 

ligands, 880 are common to the PDB dataset, and are already included in our clusters 

and 1,143 are apo-structures (protein structures with no ligands). Apo-structure 

proteins are hard to study as they require the analysis of their whole surfaces. 

Moreover, MED-SMA has only been used with binding sites. However, an interesting 

functionality of MED-SuMo is that it can deal with whole surfaces and is able to 
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localize interesting binding regions on full protein surfaces [64]. To do so, MED-

SuMo compared the full surface of a protein to a binding site database composed with 

experimentally defined binding sites from the PDB. As mentioned earlier, the 

classified MED-SuMo database is made with all purine binding sites from the PDB. 

In order to localize purine binding sites on those PROSITE apo-structures and to 

identify in which cluster they could belong to, we arranged the following enrichment 

protocol in three steps: (1) all full surfaces of the protein structures are compared to 

the purine binding sites database. (2) Results are filtered according to the MED-SuMo 

score (value 5.5, same as the parameter score_min in the classification protocol). (3) 

SCF signature analysis; a structure enriches a cluster only if it shares 60% of its SCFs 

with at least one binding site of the cluster. For computation reasons, huge PDB files 

were excluded. Based on 1143 structures, 1130 MED-SuMo runs were launched.  

 Implementation.  

MED-SuMo server is written in OCaml. This language is suited for large-scale 

software engineering [117]. External libraries are used, including MLsqlite: a sqlite 

wrapper for OCaml; zmarshall, a compression file manager; findlib: a package 

management system for Ocaml. 

MED-SuMo is a client-server application and uses a scripting language to 

process calculations requested by the remote interfaces. A Lua interpreter is 

embedded in the MED-SuMo code, using the Lua-ML library [119]. It enables the use 

of MED-SuMo‟s internal functions through very simple Lua scripts. The MED-

SuMo_Multi module was added to MED-SuMo core and enables the classification of 

any binding site dataset. Lua scripts are used to create the database for the 

classifications. MED-SuMo jobs can be parallelized for several CPUs of 

multiprocessor computers and recent development at MEDIT has enabled MED-
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SuMo to be distributed across a HPC (High-Performance Computing) cluster. 

Ongoing development is concerned with parallelization of the entire classification 

method. 

 

Software Availability and requirements. 

The standard MED-SuMo mode to query 3D interaction surfaces against 

binding sites databases or full surface databases is commercially available with the 

MED-SuMo Graphical User Interface. For the moment, MED-SMA is only available 

in a command line mode for integration with wider workflows. However, a web-based 

interface was developed to interactively explore the generated clusters. This will be 

available freely on the internet during the year 2010. MED-SuMo is commercial 

software, and further information is available at http://www.medit-pharma.com/. 

Parties interested in commercial evaluation of this technology can contact MEDIT SA 

to obtain free temporary licenses (info@medit.fr). 

Researcher from the INSERM Institute UMR-S 665 has no financial interests 

in MEDIT SA and collaborates with this company only for the present project. 

Therefore, MEDIT SA has the exclusivity for MED-SuMo sales.  
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Figure 1 - MED-SuMo Comparison Procedure.  

(1) Graph construction: (a) Surface Chemical Features (SCFs) are displayed on the 

protein structure through a lexicographic analysis of the PDB files. (b) Their positions 

and orientations are checked to discard SCF potentially involved in internal 

interactions or associated with buried atoms. (c) SCFs are gathered in triplets. (d) The 

triplet network is then stored as a graph data structure with the triplets as vertices and 

with edge connecting adjacent triplets. 

(2) Graph Comparison: (e) The query graph (in green color) is compared to the 

database graphs (in pink color), compatible triplets are detected, i.e., they are formed 

by compatible SCFs. (f) Corresponding graphs are hits found by MED-SuMo. See 

[60] and [63] for more details. 
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Figure 2 - MED-SuMo Classification Procedure. 

Global steps of binding site classification heuristic. MED-SuMo_Multi approach 

(MED-SMA) can be divided in 3 major steps: Pairwise comparison (purple box), 

Similarity matrix construction (pink box) and the Markov Cluster Algorithm 

classification (Yellow box). 2. Six steps of the MED-SMA. (a) Dataset construction, 

here, 5 binding sites are shown. The black dots represent SCFs. (b) Common SCFs 

detected by the pairwise comparisons. They are linked by a colored line; each color 

stands for matching sub-sites. (c) Matching SCFs between pairs of binding sites are 
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grouped in patch. A patch is a colored circle on the binding sites; some of them are 

overlapping. At this step, the network forms a graph structure where complex 

component are searched.(d) Parsing all patches from every component found, if 

overlapping patches have a certain amount of common SCFs (superior to a threshold 

value: parameter covering_factor), they are merged in multipatches (black bold 

circles). (e) MED-Sumo scores between multipatches are calculated to create a 

similarity matrix. (f) The similarity matrix is used by Markov Clustering (MCL) 

algorithm to classify the dataset. Finally, Biolayout is used to visualize the cluster 

mainly in 2D. 

 

 

 
Figure 3 - Example of binding site superimposition.  

dTDP-D-glucose 4,6-dehydratase (PDB code 1KEP) binding site is superimposed 

with 3 different binding sites of its cluster (MED-SuMo cluster 4). Each has different 

functions and the superimposition involves different parts of the binding site. (1) 

Global superimposition between 1KEP and UDP-Glucose-4-epimerase (PDB code 

2P5Y). (2) “Left” side of the NAD with GDP-Mannose-4,6-Dehydratase (PDB code 

1RPN) and (3) The nucleotide side of 1KEP binding site with the ATP of Arna 

protein binding site (PDB code 1Z7E). (4) Superimposition with a “hypothetical 

protein” (PDB code 2D1Y). 
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Figure 4 - Superimposition of 6 ligands from cluster 33. 

Each ligand is taken from proteins with different functions. 4 ligands are ATP (taken 

from 2CBZ in grey color, 1B0U in orange color, 1R0X in blue, 1Q12 in green), and, 2 

ADP (from 2FF7 in red and 1JJ7 in purple). b) Superimposition of ligands from 

cluster 33. (a) With and (b) without the SCFs. The phosphoryl groups are similarly 

arranged in each binding site, but the nucleotide region has two major conformations.  
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Figure 5 – Representation of a network within the classification.  

Each circled numbers are cluster IDs. If two are connected, it means that they share a 

binding site. The protein structures represented on the lines are the ones containing 

the shared binding site.  For example, 1XXI‟s ADP binding site is within cluster 40 

and 28. Here 13 links are represented involving 11 clusters. Those links underline 

how MED-SMA highlights sub-pocket similarities (see Figure 6). 
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Figure 6 - Illustration of 2 inter-clusters links. 

On the left is represented a 3D superimposition of 3 structures from clusters 40, 112 

and 245; PDB codes 1UM8 (blue), 1SXJ (red) and 1XXI (green). These proteins have 

a very low sequence identity, and they have very different fold. On the right, a closer 

view is represented, delimited by the yellow box on the left. Ligands, 1 ATP and 2 

ADP are very well superimposed and the local similarities of the binding sites are 

highlighted by several SCFs and are very distinct. These proteins are not in the same 

cluster as their similarities are very local, only SCFs on the bottom of the binding 

sites are well superimposed. This is a typical example of sub-pocket similarity.  
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Figure 7 – Comparison of a cyclin dependent kinase 2 to all binding sites of the 

classified dataset. 

Analysis of the MED-SuMo results of the comparison of the ATP binding site of a 

cyclin dependent kinase 2 (CDK2) (PDB code 1B38) to all purine binding sites of the 

dataset. The query line is yellow. Each colour corresponds to a kinase protein family: 

CMGC (dark blue are CDK2, light blue are other kind of CMGC); PTK (green); 

CAMK (pink), TKL (grey) or atypical protein kinase (light red). The white lines are 

non-human kinase proteins; they are not associated with any Kinome families. 
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Figure 8 - MED-SuMo Graphical User Interface. 

Four different windows are shown: (1) the 3D viewer is at the top left of the Figure, 

here 3 elements are superimposed: the protein binding sites, the corresponding co-

crystallized ligands, represented in stick and finally, the SCFs that enabled that 

superimposition. The viewer is an ActiveX control that allows the user to move the 

structures e. g. rotate, translate to visualize the hits as desired. (2) The result table 

window: the first line corresponds to the query name and its corresponding SCF 

signature. All other lines correspond to hits found by MED-SuMo. They are originally 

sorted by decreasing MED-SuMo score (8
th

 column). Different elements are 

accessible, e.g. 2D representation of the co-crystallized ligand, MED-SuMo score, 

quantity of common SCFs, ligand name, structure header. The most important column 

contains the list of common SCF between the query and the hits: the SCF signature. 

Each SCF is represented by a colored rectangle e.g. light blue is for HBond donor, 

dark blue for positive charges. The most important characteristic of these SCFs is that 

they each stand for 3D functional similarities. (3) The mini-viewer window enables 

the user to set graphically the depth cueing and clipping. (4) The result table contains 

the common SCF signature between the query and the hits. MED-SuMo GUI enables 

the user to classify the hits according their SCF signatures. The 4
th

 window contains a 

dendrogram where all hits are present. The number of clusters can be selected by 

moving the yellow bar.  
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 Table 

a)  

 

 ATP ADP AMP ANP GTP GDP GMP GNP NAD 

ATP 80 42 21 28 3 3 0 2 8 

ADP 42 104 14 47 1 6 1 3 8 

AMP 21 14 56 8 1 1 5 0 6 

ANP 28 47 8 61 0 2 0 3 0 

GTP 3 1 1 0 14 4 0 0 0 

GDP 3 6 1 2 4 21 3 1 0 

GMP 0 1 5 0 0 3 13 0 0 

GNP 2 3 0 3 0 1 0 6 0 

NAD 8 8 6 0 0 0 0 0 53 

 

b) 

 

 AXP GXP NAD 

AXP 303 31 22 

GXP 31 76 0 

NAD 22 0 53 

 

 

 

Table 1 - Confusion matrix of the ligand distribution within the clusters.  

(a) the confusion matrix is about each specific kind of the 9 ligands. (b) All adenine 

ligands are gathered in AXP, all guanine ligands in GXP whereas NAD remains 

NAD.  
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