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Abstract 
 

Protein structures are necessary for understanding protein function at a molecular 

level. Dynamics and flexibility of protein structures are also a key element of protein 

function. So we have proposed to look at protein flexibility using novel methods: (i) using a 

structural alphabet and (ii) combining classical X-ray B-factor data and Molecular Dynamics 

simulations. 

First, we established a library composed of structural prototypes (LSPs) to describe 

protein structure by a limited set of recurring local structures. We developed a prediction 

method that proposes structural candidates in terms of LSPs and predict protein flexibility 

along a given sequence. 

Secondly, we examine flexibility according to two different descriptors: X-ray B-

factors considered as good indicators of flexibility and the root mean square fluctuations, 

based on molecular dynamics simulations. We then define three flexibility classes and 

propose a method based on the LSP prediction method for predicting flexibility along the 

sequence.  

This method does not resort to sophisticate learning of flexibility but predicts 

flexibility from average flexibility of predicted local structures. The method is implemented 

in PredyFlexy web server. Results are similar to those obtained with the most recent, cutting-

edge methods based on direct learning of flexibility data conducted with sophisticated 

algorithms.  

PredyFlexy can be accessed at http://www.dsimb.inserm.fr/dsimb_tools/predyflexy. 

 

http://www.dsimb.inserm.fr/dsimb_tools/predyflexy
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Introduction 

 

X-ray experiments have been valuable tools to understand the intimate relation 

between protein structures and biological functions. They have revealed a large diversity of 

well-defined folds, each being adopted by members of a given functional family. However, 

recent studies have shown that conformational changes are required by numerous proteins in 

their folded state to accomplish their function (e.g., enzyme catalysis, activity modulation, 

macromolecular interactions, ligand binding, cell motility (1-4)). This has led to revisit the 

importance of dynamics and to focus on regions with peculiar flexibility properties, supposed 

to participate in conformational changes. Hence, determining those regions would be 

extremely useful to decipher and eventually control biological function. Actually, few studies 

have focused on flexible regions in folded ordered proteins. Studies have mainly focused on 

(i) the analysis of specific protein structures to catch and/or simulate the flexible and rigid 

regions and (ii) the sole information of the sequence to predict flexibility  

In the first case, 3D-structures are required all along. B-factors available with X-ray 

structures were first used as the main criteria to define protein rigidity and flexibility. 

Nowadays, the distinction between flexible and rigid regions takes advantage of dedicated 

approaches for exploring dynamics. The most popular approaches consist in atomistic 

molecular dynamics simulations, which are available through different packages like Gromacs 

(5), Amber (6), NAMD (7) or Charmm (8). Principal component analyses (PCA) of the 

resulting data allow identifying regions involved in the different type of motions and provide 

relevant information about the visited conformational space. Less time-consuming methods 

are also available, e.g., FlexServ (9), ElNemo (10) or Nomad (11) which perform Normal 

Mode Analysis (NMA) of elastic network models (ENM). Data can also be gained with 

Brownian dynamics (BD) and Discrete Dynamics (DMD) (9), or more specialized 

approaches, e.g., to define hinges between domains, as StoneHinge (12), HingeProt (13), and 
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tCONCOORD (14), which predicts conformational flexibility based on geometrical 

considerations. All these methods give a large amount of data that bring quantitative 

information enabling precise ranking of flexible and rigid regions by highlighting as well 

local deformation as large domain motions.  

In the second case, the prediction is based on the sole amino acid sequence. 

Historically, the flexibility was first predicted as Boolean, i.e., rigid or flexible, using simple 

statistical analyses of B-factor values (15-16). In the same spirit Schlessinger and Rost (17) 

developed more recently, PROFBval, a method that improved the two - states flexibility 

prediction by using Artificial Neural Networks (ANNs) combined with evolutionary 

information. Instead of ANNs, Pan and Shen used Support Vector Regression coupled with 

Random Forest (18). Chen and co-workers proposed an innovative development of Logistic 

Regressions and colocation-based representation with multiple features to predict flexible and 

rigid region (19). Nuclear Magnetic Resonance data are alternative sources of information for 

protein dynamics. Zhang and co-workers (20) as well as Trott and co-workers (21) chose to 

exploit these data rather than X-ray B-factors. Zhang’s group used variation of backbone 

torsion angles from NMR structural models whereas Trott and co-workers preferred order 

parameters to define the protein flexibility. Both groups performed prediction with neural 

networks. Galzitskaya and co-workers extend the FoldUnfold (22) methodology, which was 

originally designed to predict disorder, to the prediction of flexibility (23). 

Interesting works related to protein flexibility prediction have focussed on more 

specific question. Hence, Hirose and co-workers used NMA to define specific motions in 

proteins. These motions were predicted using a Random Forest algorithm and were further 

used to explore protein-protein interaction (24). Hwang and co-workers focused on prediction 

of flexible loops and combined B-factors, dihedral angles and accessibility (25). Kuznetsov 

and co-workers proposed a web-server for predicting residue involved in conformational 



5 

 

switches in proteins. Interestingly, it can use either protein sequence or structure. The 

prediction from the sequence is done with Support Vector Machines (26-27). 

We take advantage of the method we previously elaborated to predict local protein 

structures. We have described global protein structures using a limited set of recurring local 

structures named long structural prototypes (LSP (28)). These LSPs encompass all known 

local protein structures and ensure good quality 3D local approximation. We have proposed a 

prediction method based on evolutionary information coupled with support vector machines 

(SVM). This method provides with a list of five possible structural candidates for a target 

sequence. The prediction rate reaches 63.1%, a rather high value given the high number of 

structural classes (29). We use the output of this structural prediction as the input for our 

prediction method of flexibility. 

The originality of our method lies (i) in the use of a combination of two descriptors for 

quantifying protein dynamics, i.e. the X-ray B-factors and the Root Mean Square Fluctuation 

(RMSF) computed from Molecular Dynamics, (ii) in the prediction of flexibility through 

structural prediction of LSPs (see above) and (iii) by considering three classes of flexibility 

defined by the chosen descriptors and in which LSPs were distributed. This method turns out 

to be rather efficient compared to the most commonly used ones. The prediction rate is 

slightly better than the one of PROFbval (17) that was optimized for two classes. Importantly, 

we also propose a confidence index for assessing the quality of the prediction rate. The 

method is implemented in a useful webserver 

(http://www.dsimb.inserm.fr/dsimb_tools/predyflexy/), PredyFlexy that is able to give 

different type of predictions as well a confidence index with outputs as well as flat file. 

 

Methods 
 

The server can be used to predict protein flexibility as well to predict local protein 

http://www.dsimb.inserm.fr/dsimb_tools/predyflexy/


6 

 

structure defined by LSPs. Figure 1 explains the two main steps of the prediction 

methodology. At first, LSPs are predicted, and then using this prediction, protein flexibility is 

predicted. Prediction is defined using classical normalised B-factors (B-factorNorm) and 

normalized Root Mean Square Fluctuations (RMSFNorm) from Molecular Dynamics. 

 

LSPs Prediction. We have proposed a library consisting of 120 overlapping structural 

classes of 11-residues long fragments (28). This library was constructed with an original 

unsupervised structural clustering method called the Hybrid Protein Model (HPM, (30)). The 

Hybrid Protein principle is similar to a self-organizing neural network (31-32). It was 

constructed as a ring of N neurons (here N=120), each representing a cluster of structurally 

similar 3D fragments encoded into series of Protein Blocks (PBs). PBs are a structural 

alphabet (33), i.e., a set of local protein fragments, able to provide correct approximation of 

protein structure. Its training strategy consisted in learning the similarities between protein 

structural fragments deduced from the alignment of their PBs series (34-35). Once the HPM 

was trained, each neuron or cluster was associated with a set of fragments representing a 

structural class using root mean square deviation (RMSD, (28)). For each class, a mean 

representative fragment, or a “local structure prototype” (LSP), was chosen. The 120 LSPs 

correctly approximated the local structure ensembles. The major advantage of this library is 

its capacity to capture the continuity between the identified recurrent local structures (29). 

Relevant sequence-structure relationships were also observed and further used for prediction. 

Briefly, LSPs prediction is based on SVM training. With the LSP prediction is provided a 

confidence index CI that is based on the discriminative power of the SVMs. The higher the 

CI, the better the prediction rate is. For more details on LSPs and their prediction, please see 

(36).  

 

Protein structure datasets. A dataset of 172 X-ray high-resolution (≤ 1.5 Å) globular 
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protein structures was extracted from the Protein Data Bank (PDB) using the PDB-REPREDB 

database web service (37), which provides the user with different choices of thresholds for 

selecting chains of given sequence and structural similarity. The method is detailed in (38). 

We chose chains sharing less than 10% sequence identity and for which the CRMSD 

between aligned residues differ by at least 10 Å. Proteins composed of a single domain, not 

involved in a protein complex, and that did not have extensive number of contacts with 

ligands were considered only. A final dataset of 43 protein structures was obtained. This 

dataset 1 was used to calibrate thresholds for RMSF computed from Molecular Dynamics 

simulations using Gromacs (5). Parameters and conditions defined in ref. (39) were used for 

the simulations. A larger, non-redundant databank composed of 1421 X-ray structures with 

resolution higher than 1.5 Å, sequence identity smaller than 30% and C RMSDs larger than 

10 Å (selected using PDB-REPRDB (37)) was used for the prediction itself (dataset 2). 

 

Definition of protein structure flexibility classes. We extracted C B-factors from the 

PDB files of the protein structures dataset 1. For comparison purposes, the raw values were 

normalized for each protein using the method in (40). After removing outliers detected 

statistically with a median-based approach, the normalized B-factors were calculated as B-

factorNorm = (B-factorRaw-)/where  and  stand for the mean and the standard deviation of 

the C B-factor, respectively. Flexibility of each 11-residue long overlapping fragment in the 

dataset was characterised by the B-factorNorm associated with its central C. 

Similarly, we extracted flexibility measurements from MD simulations. C root mean 

square fluctuation (C RMSF) was calculated using g_rmsf GROMACS tool (5) after 

superimposing each snapshot structure on the initial conformation. C RMSF gives the mean 

amplitude of each Cmovement compared to a mean reference position: 
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over production time. Raw RMSF values were normalized for each protein. The RMSFNorm 

associated with the central C of each 11-residue fragment characterised the flexibility using 

MD. 

Hence, to each fragment is associated a couple of values BfactorNorm and  RMSFNorm. 

The three flexibility classes, rigid, intermediate and flexible, were then defined from a fine 

calibration of thresholds combining CRMSF (noted F) and B-Factors (noted B). The 

calibration was based on a backward-forward procedure targeting the optimal flexibility 

prediction rate. Fragments for which the couple (CB-Factors, CRMSF) is (i) smaller than 

B1, F1 are rigid, (ii) larger than B1, F1 but smaller B2, F2 are intermediate, and (iii) larger 

B2, F2 are flexible.  

Finally, a detailed analysis of RMSF and C B-Factors couples for each LSP allowed 

attributing a well-defined flexibility class to each of them as well as a mean B-factorNorm and a 

mean RMSFNorm. This was obtained by (i) computing the propensity of fragments belonging 

to a LSP to be associated with a given flexibility class and (ii) selecting as the unique assigned 

class for each LSP, the class that maximizes the propensity (see ref (39) for details). 

Flexibility Prediction: For a target sequence, the local structure prediction is first 

performed and yields the five best LSP candidates. Then the predicted flexibility class is 

obtained by simply calculating the rounded average of the flexibility classes of the 5 

candidates. In the same way, the BfactorNorm and RMSFNorm is predicted by averaging the 

mean BfactorNorm and RMSFNorm of the 5 structural candidates. At this stage, no training on 

the data was performed. The prediction reflects the informativity of structural prediction from 

sequence for flexibility.  
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Discussion 
 

The PredyFlexy method is based on the flexibility analysis of local protein structures 

through an appropriate combination of the B-factor of X-ray experiment and the fluctuation of 

residues during molecular dynamics simulations. A correlation (r
2
 equals 0.68) was obtained 

between C-BfactorNorm and C-RMSFNorm. This value confirms that even though related, 

both descriptors bring different information justifying the interest to combine both measures 

of the flexibility. The PredyFlexy method led to an average, well-balanced prediction rate of 

49.4% for the three defined flexibility classes, a value considerably higher than a random 

prediction rate. The correlation r
2 

between observed and predicted values for BfactorNorm and 

RMSFNorm reached 0.71 and 0.69 respectively. When outliers (5% of the values), detected by 

the median-based approach proposed by Smith et al (40), were excluded, correlations r
2 

climbed to 0.94 and 0.96, respectively. This correlation is slightly better than the best 

correlation value obtained by the PONDR VSL1 prediction methods (41).  

For comparison purpose, we regrouped our three flexibility classes into two classes to 

assess a two-class prediction. Depending on the grouping, we obtained prediction rates 

comparable and even better than the current methods available (17-18). Details are given in 

Table IV of ref (39). This confirms that LSP description is truly useful for addressing 

flexibility prediction.  

 

Web Server: PredyFlexy provides a user-friendly web interface that combines 

predictions for local structure and flexibility. The homepage contents a short summary of the 

two aspects of the method. In this page, the sole input, the protein sequence, must be 

provided. Two possibilities are offered: the sequence, in Fasta format, may be paste in a first 

window frame or download from a file, the filename being given in a second window frame. 

This page contents additional links: “Contacts”, which refers to authors’ homepage, “About 
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Method”, which details the methodology and its flowchart, “Download”, which allows to 

obtain a local version of the program by sending an email for registration, “Example”, which 

illustrates with a concrete case, the input and output of the server (see below), “DSIMB”, 

which connects to team’s homepage. In figure 1, are described the different steps that led 

from a protein sequence to the output results of the prediction. 

 

Input. A single Fasta sequence must be provided (Figure 1A). A check is performed to 

ensure that only natural amino acids are used. 

 

Background Step: “PredyFlexy Running”. For the given sequence, a Position 

Substitution Sequence Matrix (PSSM) is first computed with PSI-BLAST v. 2.2.09 (42) using 

default parameters and Swissprot databank (43) (Figure 1B). The sequence is then divided 

into overlapping fragments of 11 residues long (Figure 1B), corresponding to the LSP size. In 

a third step, LSP prediction is done using 120 independent Support Vector Machines (libsvm-

2.81) that was previously optimized for each LSP (36). This method yields for a target 

sequence a list of five structural candidates associated with the highest scores (Figure 1d). The 

prediction rate reaches 63.1%, a rather high value given the high number of structural classes 

(36). From this prediction, the corresponding flexibility class of the LSP is attributed. Hence, 

at this stage, each sequence fragment is characterized by five flexibility states, one per 

structural LSP in the list. Finally, the predicted flexibility state of a 11-residue sequence is a 

simple mean of the flexibility states for the five predicted LSPs candidates. (Figure 1e). Using 

so a similar approach, local B-factorNorm and RMSFNorm are predicted (Figure 1f).  

 

Output. Once the job is finished, a window opens with the results. Results are given as 

a text file that can be downloaded. Results may also be visualized through different graphical 

outputs. The first graphs represent, the values, along the sequence, of the B-factorNorm (green), 
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the RMSFNorm(yellow) on the left y-axis, and on the right y-axis, the confidence index (gray 

line). For clarity, the results are represented by blocks of 50 residues. The sequence is 

reported in the same graph above the x-axis. These combined representations allow the user to 

focus on the regions with a high confidence index, i.e., larger than 15 (representing more than 

25% of residues), frequently associated with regions with low flexibility. In the second part of 

the page, a table summarizes the results of the local structure prediction, the confidence index 

and the flexibility class. The lines correspond to each position along the sequence. In the two 

first columns are indicated the position and the corresponding amino acid (one letter). The 

five following columns contain the five best LSP candidates represented by their 3D structure 

and their corresponding number in the Hybrid Protein Model (for details, see (36)). The two 

last columns correspond to the confidence index value and the predicted flexibility class (0 for 

rigid, 1 for intermediate and 2 for flexible). The confidence index is represented by 19 

discrete values ranked from 1 to 19, with the prediction confidence increasing. For a rapid 

visualization inspection, values for CI and flexibility classes are also represented with colors. 

Note that due to the LSP size, the 10 first and 10 last residues are not predicted. 

The text file brings the same information (except the 3D representation) and two 

additional columns for the predicted B-factorNorm and RMSFNorm.  

 

Implementation. Implementation of this tool is done in Python and HTML, while the 

graphical plots are done using R software (44-45). The front-end use is based on html and 

php. Perl/cgi programs control the input while python and other programs carry out the 

processing behind the database search and pairwise comparisons. 

Figure 2 illustrates the results of the prediction of isomerase in a region ranging from 

residue 100 to 150. As the confidence index is higher than 15, the regions from (a) to (d) are 

very well predicted, while the region (e) is not reliable with a very low confidence index 

(equals to 3). So, the user can be quite sure of a succession from flexible (a) to rigid (b) with a 
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intermediate to flexible zone (c) then come back to rigid zone (d). By looking at the 

distribution of predicted LSPs, the user can analyse more deeply what could be the local 

conformations adopted by this region, i.e., a succession of short helical regions alternated by 

short loops going to an extended conformation. 

 

Conclusion 
 

Very few webservers are dedicated to the prediction of flexibility from the sole 

information of the sequence. We propose an original tool that combines in one run the 

prediction of the local structures and the associated flexibility. We also chose to predict 

flexibility in three classes compared to two in most studies. We also provide B-factor and 

RMSF prediction. Additionally, very useful and important information is provided by the 

confidence index. This value allows the user to assess the predictability of its sequence or 

region of interest. We hope the availability of our method through PredyFlexy Web server 

will help researchers to better understand the properties of their protein and design new 

experiments focusing on appropriate regions depending on their goal. 
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Figure legends 
 

 

 

Figure 1. The framework of PredyFlexy and underlying methods. User must give a 

single sequence as input (a) a PSSM is computed using PSI-BLAST (b) and split into 

fragments of 11 residues. Prediction of LSPs is done using trained SVMs (c) scores are 

ranked and the best five are kept (d). Using these LSPs, prediction of flexibility is done in 

three states (rigid, intermediate and flexible) (e) are also provided predicted B-factorNorm, 

RMSFNorm and a confidence index (f). 
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Figure 2. Protein prediction example. The prediction highlights the regions from 

residue 100 to 150. In regions (a) to (d) are located residues predicted with a high accuracy 

(confidence index of 15 or better, it represents flexible (a) to rigid (b) with an intermediate to 

a flexible zone (c) then coming back to rigid zone (d). Following region (e) is predicted as 

flexible, but the low confidence index (equals to 3) makes the prediction not reliable. 
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