DNA repair protein RAD50 (RAD50)

The protein contains 1312 amino acids for an estimated molecular weight of 153892 Da.

 

Component of the MRN complex, which plays a central role in double-strand break (DSB) repair, DNA recombination, maintenance of telomere integrity and meiosis. The complex possesses single-strand endonuclease activity and double-strand-specific 3'-5' exonuclease activity, which are provided by MRE11. RAD50 may be required to bind DNA ends and hold them in close proximity. This could facilitate searches for short or long regions of sequence homology in the recombining DNA templates, and may also stimulate the activity of DNA ligases and/or restrict the nuclease activity of MRE11 to prevent nucleolytic degradation past a given point (PubMed:11741547, PubMed:9590181, PubMed:9705271, PubMed:9651580). The complex may also be required for DNA damage signaling via activation of the ATM kinase (PubMed:15064416). In telomeres the MRN complex may modulate t-loop formation (PubMed:10888888). (updated: Dec. 20, 2017)

Protein identification was indicated in the following studies:

  1. Goodman and co-workers. (2013) The proteomics and interactomics of human erythrocytes. Exp Biol Med (Maywood) 238(5), 509-518.
  2. Hegedűs and co-workers. (2015) Inconsistencies in the red blood cell membrane proteome analysis: generation of a database for research and diagnostic applications. Database (Oxford) 1-8.
  3. Wilson and co-workers. (2016) Comparison of the Proteome of Adult and Cord Erythroid Cells, and Changes in the Proteome Following Reticulocyte Maturation. Mol Cell Proteomics. 15(6), 1938-1946.
  4. D'Alessandro and co-workers. (2017) Red blood cell proteomics update: is there more to discover? Blood Transfus. 15(2), 182-187.
  5. Bryk and co-workers. (2017) Quantitative Analysis of Human Red Blood Cell Proteome. J Proteome Res. 16(8), 2752-2761.
  6. Chu and co-workers. (2018) Quantitative mass spectrometry of human reticulocytes reveal proteome-wide modifications during maturation. Br J Haematol. 180(1), 118-133.

Methods

The following articles were analysed to gather the proteome content of erythrocytes.

The gene or protein list provided in the studies were processed using the ID mapping API of Uniprot in September 2018. The number of proteins identified and mapped without ambiguity in these studies is indicated below.
Only Swiss-Prot entries (reviewed) were considered for protein evidence assignation.

PublicationIdentification 1Uniprot mapping 2Not mapped /
Obsolete
TrEMBLSwiss-Prot
Goodman (2013)2289 (gene list)227853205992269
Lange (2014)123412347281224
Hegedus (2015)2638262202352387
Wilson (2016)165815281702911068
d'Alessandro (2017)18261817201815
Bryk (2017)20902060101081942
Chu (2018)18531804553621387

1 as available in the article and/or in supplementary material
2 uniprot mapping returns all protein isoforms as one entry

The compilation of older studies can be retrieved from the Red Blood Cell Collection database.

The data and differentiation stages presented below come from the proteomic study and analysis performed by our partners of the GReX consortium, more details are available in their published work.

No sequence conservation computed yet.

Interpro domains
Total structural coverage: 45%
Model score: 0
No model available.

(right-click above to access to more options from the contextual menu)

VariantDescription
dbSNP:rs28903085
dbSNP:rs28903086
dbSNP:rs2230017
dbSNP:rs28903087
dbSNP:rs28903088
dbSNP:rs28903090
dbSNP:rs55653181
dbSNP:rs1047380
dbSNP:rs1047382
dbSNP:rs28903093
dbSNP:rs1047386
dbSNP:rs1129482
dbSNP:rs1047387

The reference OMIM entry for this protein is 604040

Rad50, s. cerevisiae, homolog of; rad50

CLONING

The S. cerevisiae Rad50 gene encodes a protein that is essential for double-stranded DNA break repair by nonhomologous DNA end joining and chromosomal integration. The yeast Rad50, Mre11 (600814), and Xrs2 proteins appear to act in a multiprotein complex, consistent with the observation that mutations in these genes confer nearly identical phenotypes of no meiotic recombination and elevated rates of homologous mitotic recombination. By direct selection of cDNAs from the 5q23-q31 chromosomal interval, Dolganov et al. (1996) isolated a cDNA encoding a human Rad50 homolog. The human RAD50 gene spans 100 to 130 kb. Northern blot analysis revealed that the RAD50 gene was expressed as a 5.5-kb mRNA predominantly in testis. A faint 7-kb transcript, which the authors considered to be an mRNA with an alternatively processed 3-prime end, was also detected. Yeast Rad50 and the predicted 1,312-amino acid human RAD50 protein share more than 50% identity in their N- and C-termini. The central heptad repeat domains of the proteins have relatively divergent primary sequences but are predicted to adopt very similar coiled-coil structures. Using immunoprecipitation, Dolganov et al. (1996) demonstrated that the 153-kD RAD50 is stably associated with MRE11 in a protein complex, which may also include proteins of 95 kD, 200 kD, and 350 kD.

MAPPING

By inclusion within mapped clones and by analysis of somatic cell hybrids, Dolganov et al. (1996) mapped the RAD50 gene to 5q31. They suggested that a recombinational DNA repair deficiency may be associated with the development of myeloid leukemia, since this chromosomal region is frequently altered in acute myeloid leukemia and myelodysplastic disease.

GENE FUNCTION

Trujillo et al. (1998) determined that the 95-kD protein in the mammalian cell nuclear complex containing RAD50 and MRE11 is nibrin, or p95 (602667), the protein encoded by the gene mutated in Nijmegen breakage syndrome (NBS; 251260). The RAD50 complex possessed manganese-dependent single-stranded DNA endonuclease and 3-prime to 5-prime exonuclease activities. The authors stated that these nuclease activities are likely to be important for recombination, repair, and genomic stability. Carney et al. (1998) demonstrated that p95 is an integral member of the MRE11/RAD50 complex and that the function of this complex is impaired in cells from NBS patients. They stated that although p95 has little sequence homology to yeast Xrs2, the 2 proteins can be considered functional analogs since they link the conserved activities of MRE11/RAD50 to the cellular DNA damage response in their respective organisms. Zhong et al. (1999) showed that BRCA1 (113705) interacts in vitro and in vivo with RAD50. Formation of irradiation-induced foci positive for BRCA1, RAD50, MRE11, or p95 was dramatically reduced in HCC/1937 breast cancer cells carrying a homozygous mutation in BRCA1 but was restored by transfection of wildtype BRCA1. Ectopic expression of wildtype, but not mutated, BRCA1 in these cells rendered them less sensitive to the DNA damage agent methyl methanesulfonate. These data suggested to the authors that BRCA1 is important for the cellular responses to DNA damage that are mediated by the RAD50-MRE11-p95 complex. Wang et al. (2000) used immunoprecipitation and mass spectrometry analyses to identify BRCA1-associated proteins. They found that BRCA1 is part of a large multisubunit protein complex of tumor suppressors, DNA dama ... More on the omim web site

Subscribe to this protein entry history

Feb. 10, 2018: Protein entry updated
Automatic update: Entry updated from uniprot information.

Feb. 2, 2018: Protein entry updated
Automatic update: Uniprot description updated

Dec. 19, 2017: Protein entry updated
Automatic update: Uniprot description updated

Nov. 23, 2017: Protein entry updated
Automatic update: Uniprot description updated

March 16, 2016: Protein entry updated
Automatic update: OMIM entry 604040 was added.