Ras-related protein Rab-23 (RAB23)

The protein contains 237 amino acids for an estimated molecular weight of 26659 Da.

 

The small GTPases Rab are key regulators of intracellular membrane trafficking, from the formation of transport vesicles to their fusion with membranes. Rabs cycle between an inactive GDP-bound form and an active GTP-bound form that is able to recruit to membranes different set of downstream effectors directly responsible for vesicle formation, movement, tethering and fusion. Together with SUFU, prevents nuclear import of GLI1, and thereby inhibits GLI1 transcription factor activity. Regulates GLI1 in differentiating chondrocytes. Likewise, regulates GLI3 proteolytic processing and modulates GLI2 and GLI3 transcription factor activity. Plays a role in autophagic vacuole assembly, and mediates defense against pathogens, such as S.aureus, by promoting their capture by autophagosomes that then merge with lysosomes. (updated: April 1, 2015)

Protein identification was indicated in the following studies:

  1. Goodman and co-workers. (2013) The proteomics and interactomics of human erythrocytes. Exp Biol Med (Maywood) 238(5), 509-518.
  2. Hegedűs and co-workers. (2015) Inconsistencies in the red blood cell membrane proteome analysis: generation of a database for research and diagnostic applications. Database (Oxford) 1-8.
  3. Bryk and co-workers. (2017) Quantitative Analysis of Human Red Blood Cell Proteome. J Proteome Res. 16(8), 2752-2761.
  4. D'Alessandro and co-workers. (2017) Red blood cell proteomics update: is there more to discover? Blood Transfus. 15(2), 182-187.
  5. Chu and co-workers. (2018) Quantitative mass spectrometry of human reticulocytes reveal proteome-wide modifications during maturation. Br J Haematol. 180(1), 118-133.

Methods

The following articles were analysed to gather the proteome content of erythrocytes.

The gene or protein list provided in the studies were processed using the ID mapping API of Uniprot in September 2018. The number of proteins identified and mapped without ambiguity in these studies is indicated below.
Only Swiss-Prot entries (reviewed) were considered for protein evidence assignation.

PublicationIdentification 1Uniprot mapping 2Not mapped /
Obsolete
TrEMBLSwiss-Prot
Goodman (2013)2289 (gene list)227853205992269
Lange (2014)123412347281224
Hegedus (2015)2638262202352387
Wilson (2016)165815281702911068
d'Alessandro (2017)18261817201815
Bryk (2017)20902060101081942
Chu (2018)18531804553621387

1 as available in the article and/or in supplementary material
2 uniprot mapping returns all protein isoforms as one entry

The compilation of older studies can be retrieved from the Red Blood Cell Collection database.

The data and differentiation stages presented below come from the proteomic study and analysis performed by our partners of the GReX consortium, more details are available in their published work.

No sequence conservation computed yet.

This protein is annotated as membranous in Gene Ontology, is annotated as membranous in UniProt.


Interpro domains
Total structural coverage: 89%
Model score: 0
No model available.

(right-click above to access to more options from the contextual menu)

VariantDescription
CRPT1
dbSNP:rs45442500
CRPT1
dbSNP:rs45479896
dbSNP:rs1040461

The reference OMIM entry for this protein is 201000

Carpenter syndrome 1; crpt1
Carpenter syndrome
Acrocephalopolysyndactyly type ii
Acps ii

A number sign (#) is used with this entry because of evidence that Carpenter syndrome-1 (CRPT1) is caused by homozygous mutation in the RAB23 gene (606144) on chromosome 6p11.

DESCRIPTION

Carpenter syndrome is a rare autosomal recessive disorder with the cardinal features of acrocephaly with variable synostosis of the sagittal, lambdoid, and coronal sutures; peculiar facies; brachydactyly of the hands with syndactyly; preaxial polydactyly and syndactyly of the feet; congenital heart defects; growth retardation; mental retardation; hypogenitalism; and obesity. In addition, cerebral malformations, oral and dental abnormalities, coxa valga, genu valgum, hydronephrosis, precocious puberty, and hearing loss may be observed (summary by Altunhan et al., 2011). - Genetic Heterogeneity of Carpenter Syndrome Carpenter syndrome-2 (CRPT2; 614976), in which the features of Carpenter syndrome are sometimes associated with defective lateralization, is caused by mutation in the MEGF8 gene (604267).

CLINICAL FEATURES

Carpenter (1909) described 2 sisters and a brother with acrocephaly, peculiar facies, brachydactyly, and syndactyly in the hands, and preaxial polydactyly and syndactyly of the toes. Temtamy (1966) could find 9 other reported cases and added one. In older patients obesity, mental retardation, and hypogonadism had been noted. In all cases the parents have been normal. Parental consanguinity was suspected in 1 case. The case of acrocephalosyndactyly with foot polydactyly reported by Owen (1952) probably represented Carpenter syndrome, as do the sibs reported by Schonenberg and Scheidhauer (1966). One patient thought to have this condition by Palacios and Schimke (1969) was 49 years old. Eaton et al. (1974) reported affected sibs. Cohen et al. (1987) described 2 affected sibs showing marked intrafamilial variability. This experience and a review of the literature suggested that the Goodman syndrome (201020) and the Summitt syndrome (272350) fall well within the clinical spectrum of the Carpenter syndrome. Gershoni-Baruch (1990) described a brother and sister with rather striking differences in severity. The first born had craniosynostosis of the sagittal suture, normal intelligence, and no abnormalities of the hands and feet. The second born sib had polysyndactyly of hands and feet, normal intelligence, and no craniosynostosis. Gershoni-Baruch (1990) suggested that polysyndactyly is not an absolute requisite for the diagnosis of Carpenter syndrome and that the Summitt and Goodman syndromes are 'within the clinical spectrum' of Carpenter syndrome, as suggested by Cohen et al. (1987). Alessandri et al. (2010) described 4 boys with Carpenter syndrome from a consanguineous Comoros Islands pedigree. All 4 boys presented with acrocephaly and polysyndactyly, but displayed variable severity of craniosynostosis ranging from cloverleaf skull to predominant involvement of the metopic ridge (turricephaly). All of the children also had a combination of brachydactyly with agenesis of the middle phalanges, syndactyly, broad thumbs, and postaxial polydactyly in the hands, with preaxial polydactyly and syndactyly of the toes. Mental development was normal in all; brain imaging showed hydrocephalus in 2 of the 4 boys. Additional features included corneal anomaly in 2, cryptorchidism in 3, umbilical hernia in 1, genu valgum in 2, umbilical hernia in 1, severe kyphoscoliosis in 1, patent ductus arteriosus in 1, and accessory spleen in 1. More on the omim web site

Subscribe to this protein entry history

Feb. 2, 2018: Protein entry updated
Automatic update: Uniprot description updated

Dec. 19, 2017: Protein entry updated
Automatic update: Uniprot description updated

March 16, 2016: Protein entry updated
Automatic update: OMIM entry 201000 was added.