Puromycin-sensitive aminopeptidase (NPEPPS)

The protein contains 919 amino acids for an estimated molecular weight of 103276 Da.

 

Aminopeptidase with broad substrate specificity for several peptides. Involved in proteolytic events essential for cell growth and viability. May act as regulator of neuropeptide activity. Plays a role in the antigen-processing pathway for MHC class I molecules. Involved in the N-terminal trimming of cytotoxic T-cell epitope precursors. Digests the poly-Q peptides found in many cellular proteins. Digests tau from normal brain more efficiently than tau from Alzheimer disease brain. (updated: March 4, 2015)

Protein identification was indicated in the following studies:

  1. Goodman and co-workers. (2013) The proteomics and interactomics of human erythrocytes. Exp Biol Med (Maywood) 238(5), 509-518.
  2. Hegedűs and co-workers. (2015) Inconsistencies in the red blood cell membrane proteome analysis: generation of a database for research and diagnostic applications. Database (Oxford) 1-8.
  3. D'Alessandro and co-workers. (2017) Red blood cell proteomics update: is there more to discover? Blood Transfus. 15(2), 182-187.
  4. Bryk and co-workers. (2017) Quantitative Analysis of Human Red Blood Cell Proteome. J Proteome Res. 16(8), 2752-2761.

Methods

The following articles were analysed to gather the proteome content of erythrocytes.

The gene or protein list provided in the studies were processed using the ID mapping API of Uniprot in September 2018. The number of proteins identified and mapped without ambiguity in these studies is indicated below.
Only Swiss-Prot entries (reviewed) were considered for protein evidence assignation.

PublicationIdentification 1Uniprot mapping 2Not mapped /
Obsolete
TrEMBLSwiss-Prot
Goodman (2013)2289 (gene list)227853205992269
Lange (2014)123412347281224
Hegedus (2015)2638262202352387
Wilson (2016)165815281702911068
d'Alessandro (2017)18261817201815
Bryk (2017)20902060101081942
Chu (2018)18531804553621387

1 as available in the article and/or in supplementary material
2 uniprot mapping returns all protein isoforms as one entry

The compilation of older studies can be retrieved from the Red Blood Cell Collection database.

The data and differentiation stages presented below come from the proteomic study and analysis performed by our partners of the GReX consortium, more details are available in their published work.

No sequence conservation computed yet.

Interpro domains
Total structural coverage: 0%
Model score: 0
No model available.

(right-click above to access to more options from the contextual menu)

The reference OMIM entry for this protein is 606793

Aminopeptidase, puromycin-sensitive; npepps
Psa
Metalloprotease mp100; mp100

DESCRIPTION

Aminopeptidases are a group of exopeptidases that hydrolyze amino acids from the N terminus of a peptide substrate. Puromycin-sensitive aminopeptidase (EC 3.4.11.14) contains the zinc-binding domain characteristic of the gluzincin group of zinc metalloproteases (see 605896).

CLONING

Tobler et al. (1997) cloned PSA from a human fetal brain cDNA library using the mouse PSA cDNA as probe. They established that translation is initiated at the second of 2 possible start codons, resulting in a deduced 875-amino acid protein with a molecular mass of 99 kD by SDS-PAGE. PSA contains a zinc-binding motif conserved among gluzincin aminopeptidases and shares 98% sequence identity with the mouse protein. Northern blot analysis detected ubiquitous expression of a 4.8-kb transcript, with highest expression in brain. By in situ hybridization of adult human brain sections, expression was localized to the perikaryon of neurons of the cortex and cerebellum. Using immunofluorescence localization of transfected HeLa cells, Tobler et al. (1997) found that PSA localizes to the perinuclear cytoplasm and shows a filamentous staining pattern. Bauer et al. (2001) cloned PSA cDNA from a human skeletal muscle library. Northern blot analysis detected major and minor transcripts of 4.8 and 4.2 kb, respectively. Huber et al. (1999) determined that PSA is identical to the metalloprotease MP100 that was originally isolated as a beta-secretase candidate from human brain by Schonlein et al. (1994).

GENE FUNCTION

Huber et al. (1999) were able to colocalize and coimmunoprecipitate PSA with beta-amyloid precursor protein (104760); however, PSA did not increase production of the amyloid-beta peptide in cotransfected cells. By RT-PCR, but not by Northern blot analysis, Bauer et al. (2001) found that PSA was upregulated in human leukemic cells following vitamin D stimulation.

GENE STRUCTURE

Thompson et al. (1999) determined that the PSA gene contains 23 exons spanning approximately 40 kb. They found that the active site motif iis split between exons 9 and 10. Analysis of the 5-prime flanking region indicated that the gene lacks a TATA box, is GC rich, and contains 5 putative SP1 (189906)-binding sites.

MAPPING

By FISH, Bauer et al. (2001) mapped the PSA gene to chromosome 17q21. Osada et al. (1999) mapped the mouse Psa gene to a region of syntenic homology on chromosome 11.

POPULATION GENETICS

By analyzing short-read mapping depth for 159 human genomes, Sudmant et al. (2010) demonstrated accurate estimation of absolute copy number for duplications as small as 1.9 kb pairs, ranging from 0 to 48 copies. Sudmant et al. (2010) identified 4.1 million 'singly unique nucleotide' positions informative in distinguishing specific copies and used them to genotype the copy and content of specific paralogs within highly duplicated gene families. These data identified human-specific expansions in genes associated with brain development, such as GPRIN2 (611240) and SRGAP2 (606524), which have been implicated in neurite outgrowth and branching. Also included were the brain-specific HYDIN2 gene (610813), associated with micro- and macrocephaly; DRD5 (126453), a dopamine D5 receptor; and the GTF2I (601679) transcription factors, whose deletion has been associated with visual-spatial and sociability deficits among Williams-Beuren syndrome (194050) patients, among others. The data of Sudmant et al. (2010) also revealed e ... More on the omim web site

Subscribe to this protein entry history

Feb. 2, 2018: Protein entry updated
Automatic update: Uniprot description updated

Dec. 19, 2017: Protein entry updated
Automatic update: Uniprot description updated

March 16, 2016: Protein entry updated
Automatic update: OMIM entry 606793 was added.