Catalase (CAT)

The protein contains 527 amino acids for an estimated molecular weight of 59756 Da.

 

Occurs in almost all aerobically respiring organisms and serves to protect cells from the toxic effects of hydrogen peroxide. Promotes growth of cells including T-cells, B-cells, myeloid leukemia cells, melanoma cells, mastocytoma cells and normal and transformed fibroblast cells. (updated: Oct. 10, 2018)

Protein identification was indicated in the following studies:

  1. Goodman and co-workers. (2013) The proteomics and interactomics of human erythrocytes. Exp Biol Med (Maywood) 238(5), 509-518.
  2. Lange and co-workers. (2014) Annotating N termini for the human proteome project: N termini and Nα-acetylation status differentiate stable cleaved protein species from degradation remnants in the human erythrocyte proteome. J Proteome Res. 13(4), 2028-2044.
  3. Hegedűs and co-workers. (2015) Inconsistencies in the red blood cell membrane proteome analysis: generation of a database for research and diagnostic applications. Database (Oxford) 1-8.
  4. Wilson and co-workers. (2016) Comparison of the Proteome of Adult and Cord Erythroid Cells, and Changes in the Proteome Following Reticulocyte Maturation. Mol Cell Proteomics. 15(6), 1938-1946.
  5. Bryk and co-workers. (2017) Quantitative Analysis of Human Red Blood Cell Proteome. J Proteome Res. 16(8), 2752-2761.
  6. D'Alessandro and co-workers. (2017) Red blood cell proteomics update: is there more to discover? Blood Transfus. 15(2), 182-187.
  7. Chu and co-workers. (2018) Quantitative mass spectrometry of human reticulocytes reveal proteome-wide modifications during maturation. Br J Haematol. 180(1), 118-133.

Methods

The following articles were analysed to gather the proteome content of erythrocytes.

The gene or protein list provided in the studies were processed using the ID mapping API of Uniprot in September 2018. The number of proteins identified and mapped without ambiguity in these studies is indicated below.
Only Swiss-Prot entries (reviewed) were considered for protein evidence assignation.

PublicationIdentification 1Uniprot mapping 2Not mapped /
Obsolete
TrEMBLSwiss-Prot
Goodman (2013)2289 (gene list)227853205992269
Lange (2014)123412347281224
Hegedus (2015)2638262202352387
Wilson (2016)165815281702911068
d'Alessandro (2017)18261817201815
Bryk (2017)20902060101081942
Chu (2018)18531804553621387

1 as available in the article and/or in supplementary material
2 uniprot mapping returns all protein isoforms as one entry

The compilation of older studies can be retrieved from the Red Blood Cell Collection database.

The data and differentiation stages presented below come from the proteomic study and analysis performed by our partners of the GReX consortium, more details are available in their published work.

No sequence conservation computed yet.

This protein is annotated as membranous in Gene Ontology.


Interpro domains
Total structural coverage: 100%
Model score: 100
No model available.

(right-click above to access to more options from the contextual menu)

The reference OMIM entry for this protein is 115500

Catalase; cat

DESCRIPTION

Catalase (EC 1.11.1.6) catalyzes the decomposition of hydrogen peroxide to oxygen and water. Mammalian catalase of approximately 240 kD occurs as a complex of 4 identical subunits, each of which contains 526 amino acid residues (summary by Ogata, 1991; Ogata et al., 2008).

CLONING

Bell et al. (1986) gave the cDNA sequence for human kidney catalase. The coding region had 1,581 basepairs.

GENE STRUCTURE

Quan et al. (1986) found that the CAT gene is 34 kb long and split into 13 exons.

MAPPING

Wieacker et al. (1980) assigned a gene for catalase to 11p by study of man-mouse cell hybrid clones. In the hybrid cells, detection of human catalase was precluded by the complexity of the electrophoretic patterns resulting from interference by a catalase-modifying enzyme activity. Therefore, a specific antihuman antibody was used in conjunction with electrophoresis. In mouse, catalase is not syntenic to the beta-globin cluster or to LDH-A. Niikawa et al. (1982) confirmed the close linkage of catalase to the gene of the WAGR complex (see 194070) by demonstrating low levels of catalase activity in the erythrocytes of 2 unrelated patients with the WAGR syndrome and small deletions in 11p. From the study of dosage in 2 unrelated patients with an interstitial deletion involving 11p13, Narahara et al. (1984) concluded that both the catalase locus and the WAGR locus are situated in the chromosome segment 11p1306-p1305, with catalase distal to WAGR. By classic linkage studies using RFLPs of the several genes as markers, Kittur et al. (1985) derived the following sequence of loci: cen--CAT--16 cM--CALC--8 cM--PTH--pter, with the interval between CAT and PTH estimated at 26 cM.

CYTOGENETICS

Junien et al. (1980) investigated catalase gene dosage effects in a case of 11p13 deletion, a case of trisomy of all of 11p except 11p13, and a case of trisomy 11p13. The results were consistent with assignment of the catalase locus to 11p13 and its linkage with the WAGR complex (194070). Assay of catalase activity should be useful in identifying those cases of presumed new mutation aniridia that have a risk of Wilms tumor or gonadoblastoma, even in the absence of visible chromosomal deletion. In karyotypically normal patients with aniridia, Wilms tumor, or the combination of the 2, Ferrell and Riccardi (1981) found normal catalase levels.

BIOCHEMICAL FEATURES

Several rare electrophoretic variants of red cell catalase were identified by Baur (1963). Nance et al. (1968) also described electrophoretic variants. Kenney et al. (2005) found that keratoconus (see 148300) corneas exhibited a 2.20-fold increase in catalase mRNA and 1.8-fold increase in enzyme activity. They concluded that elevated levels of cathepsins V/L2, B (116810), and G (116830) in keratoconus corneas could stimulate hydrogen peroxide production which, in turn, could upregulate catalase, an antioxidant enzyme. These and other findings supported the hypothesis that keratoconus corneas undergo oxidative stress and tissue degradation. Shibata et al. (1967) found that an immunologically reactive but enzymatically inactive protein about one-sixth the size of active catalase is present in red cells of patients with acatalasemia (614097).

MOLECULAR GENETICS

Data on gene frequencies of allelic variants were tabulated by Roychoudhury and Nei (1988). - Acatalasemia In Japanese patients with acatalasemia (614097), Wen et al. (1990) i ... More on the omim web site

Subscribe to this protein entry history

Nov. 17, 2018: Protein entry updated
Automatic update: OMIM entry 115500 was added.

Oct. 19, 2018: Additional information
Initial protein addition to the database. This entry was referenced in Bryk and co-workers. (2017).