Lysozyme C (LYZ)

The protein contains 148 amino acids for an estimated molecular weight of 16537 Da.

 

Lysozymes have primarily a bacteriolytic function; those in tissues and body fluids are associated with the monocyte-macrophage system and enhance the activity of immunoagents. (updated: April 1, 2015)

Protein identification was indicated in the following studies:

  1. Goodman and co-workers. (2013) The proteomics and interactomics of human erythrocytes. Exp Biol Med (Maywood) 238(5), 509-518.
  2. Hegedűs and co-workers. (2015) Inconsistencies in the red blood cell membrane proteome analysis: generation of a database for research and diagnostic applications. Database (Oxford) 1-8.
  3. Wilson and co-workers. (2016) Comparison of the Proteome of Adult and Cord Erythroid Cells, and Changes in the Proteome Following Reticulocyte Maturation. Mol Cell Proteomics. 15(6), 1938-1946.
  4. D'Alessandro and co-workers. (2017) Red blood cell proteomics update: is there more to discover? Blood Transfus. 15(2), 182-187.

Methods

The following articles were analysed to gather the proteome content of erythrocytes.

The gene or protein list provided in the studies were processed using the ID mapping API of Uniprot in September 2018. The number of proteins identified and mapped without ambiguity in these studies is indicated below.
Only Swiss-Prot entries (reviewed) were considered for protein evidence assignation.

PublicationIdentification 1Uniprot mapping 2Not mapped /
Obsolete
TrEMBLSwiss-Prot
Goodman (2013)2289 (gene list)227853205992269
Lange (2014)123412347281224
Hegedus (2015)2638262202352387
Wilson (2016)165815281702911068
d'Alessandro (2017)18261817201815
Bryk (2017)20902060101081942
Chu (2018)18531804553621387

1 as available in the article and/or in supplementary material
2 uniprot mapping returns all protein isoforms as one entry

The compilation of older studies can be retrieved from the Red Blood Cell Collection database.

The data and differentiation stages presented below come from the proteomic study and analysis performed by our partners of the GReX consortium, more details are available in their published work.

No sequence conservation computed yet.

Interpro domains
Total structural coverage: 100%
Model score: 100
No model available.

(right-click above to access to more options from the contextual menu)

VariantDescription
AMYL8
AMYL8
dbSNP:rs1800973

No binding partner found

The reference OMIM entry for this protein is 105200

Amyloidosis, familial visceral
Amyloidosis viii
Ostertag type amyloidosis
German type amyloidosis
Amyloidosis, familial renal
Amyloidosis, systemic nonneuropathic

A number sign (#) is used with this entry because of the evidence that systemic nonneuropathic amyloidosis is the result of mutation in the apolipoprotein A1 gene (APOA1; 107680), the fibrinogen alpha-chain gene (FGA; 134820), the lysozyme gene (LYZ; 153450), or the gene encoding beta-2-microglobulin (B2M; 109700).

CLINICAL FEATURES

Ostertag (1932, 1950) reported on a family with visceral amyloidosis. A woman, 3 of her children, and 1 of her grandchildren were affected with chronic nephropathy, arterial hypertension, and hepatosplenomegaly. Albuminuria, hematuria and pitting edema were early signs. The age of onset was variable. Death occurred about 10 years after onset. The visceral involvement by amyloid was found to be extensive. Maxwell and Kimbell (1936) described 3 brothers who died of visceral, especially renal, amyloidosis in their 40s. Chronic weakness, edema, proteinuria, and hepatosplenomegaly were features. McKusick (1974) followed up on the family reported by Maxwell and Kimbell (1936). The father of the 3 affected brothers died at age 72 after an automobile accident and their mother died suddenly at age 87 after being in apparent good health. A son of one of the brothers had frequent bouts of unexplained fever in childhood (as did his father and 2 uncles), accompanied at times by nonspecific rash. At the age of 35, proteinuria was discovered and renal amyloidosis was diagnosed by renal biopsy. For 2 years thereafter he displayed the nephrotic syndrome, followed in the next 2 years by uremia from which he died at age 39. Autopsy revealed amyloidosis, most striking in the kidneys but also involving the adrenal glands and spleen. Although some features of the family of Maxwell and Kimbell (1936) are similar to those of urticaria, deafness and amyloidosis (191900), no deafness was present in their family. Weiss and Page (1974) reported a family with 2 definite and 4 probable cases in 3 generations. Mornaghi et al. (1981, 1982) reported rapidly progressive biopsy-proved renal amyloidosis in 3 brothers, aged 49, 52 and 55, of Irish-American origin. None had evidence of a plasma cell dyscrasia, a monoclonal serum or urine protein, or any underlying chronic disease. Immunoperoxidase staining of 1 pulmonary and 1 renal biopsy specimen was negative for amyloid A (AA), amyloid L (AL) and prealbumin. The authors concluded that the disorder in the 3 brothers closely resembled that described by Ostertag (1932). Studying the proband of a kindred with the familial amyloidosis of Ostertag, Lanham et al. (1982) demonstrated permanganate-sensitive congophilia of the amyloid but found no immunofluorescent staining for amyloid A or prealbumin. They concluded that this amyloid may be chemically distinct from previously characterized forms. Libbey and Talbert (1987) described a case of nephropathic amyloidosis, presumably of the Ostertag type. In their case, the amyloid showed no staining for light chains or prealbumin. Involvement of the liver was associated with cholestasis. In the kindred reported by Lanham et al. (1982), 6 members in 2 generations showed the onset of renal disease between ages 23 and 45 years. The deposition of amyloid is characteristically interstitial rather than glomerular as seen in other forms of amyloidosis. The proband had the sicca syndrome. The details of their patient's family history were not given by Libbey and Talbert (1987). Zalin et al. (1991) described yet another family with the Ostertag type of f ... More on the omim web site

Subscribe to this protein entry history

Feb. 2, 2018: Protein entry updated
Automatic update: Uniprot description updated

Dec. 19, 2017: Protein entry updated
Automatic update: Uniprot description updated

Nov. 23, 2017: Protein entry updated
Automatic update: Uniprot description updated

March 16, 2016: Protein entry updated
Automatic update: OMIM entry 105200 was added.

Jan. 28, 2016: Protein entry updated
Automatic update: model status changed

Jan. 24, 2016: Protein entry updated
Automatic update: model status changed