The protein contains 939 amino acids for an estimated molecular weight of 103960 Da.
Component of the adaptor protein complex 2 (AP-2). Adaptor protein complexes function in protein transport via transport vesicles in different membrane traffic pathways. Adaptor protein complexes are vesicle coat components and appear to be involved in cargo selection and vesicle formation. AP-2 is involved in clathrin-dependent endocytosis in which cargo proteins are incorporated into vesicles surrounded by clathrin (clathrin-coated vesicles, CCVs) which are destined for fusion with the early endosome. The clathrin lattice serves as a mechanical scaffold but is itself unable to bind directly to membrane components. Clathrin-associated adaptor protein (AP) complexes which can bind directly to both the clathrin lattice and to the lipid and protein components of membranes are considered to be the major clathrin adaptors contributing the CCV formation. AP-2 also serves as a cargo receptor to selectively sort the membrane proteins involved in receptor-mediated endocytosis. AP-2 seems to play a role in the recycling of synaptic vesicle membranes from the presynaptic surface. AP-2 recognizes Y-X-X-[FILMV] (Y-X-X-Phi) and [ED]-X-X-X-L-[LI] endocytosis signal motifs within the cytosolic tails of transmembrane cargo molecules. AP-2 may also play a role in maintaining normal post-endocytic trafficking through the ARF6-regulated, non-clathrin pathway. During long-term potentiation in hippocampal neurons, AP-2 is responsible for the endocytosis of ADAM10 (PubMed:23676497). The AP-2 alph (updated: July 31, 2019)
Protein identification was indicated in the following studies:
The following articles were analysed to gather the proteome content of erythrocytes.
The gene or protein list provided in the studies were processed using the ID mapping API of Uniprot in September 2018. The number of proteins identified and mapped without ambiguity in these studies is indicated below.
Only Swiss-Prot entries (reviewed) were considered for protein evidence assignation.
Publication | Identification 1 | Uniprot mapping 2 | Not mapped / Obsolete | TrEMBL | Swiss-Prot |
---|---|---|---|---|---|
Goodman (2013) | 2289 (gene list) | 2278 | 53 | 20599 | 2269 |
Lange (2014) | 1234 | 1234 | 7 | 28 | 1224 |
Hegedus (2015) | 2638 | 2622 | 0 | 235 | 2387 |
Wilson (2016) | 1658 | 1528 | 170 | 291 | 1068 |
d'Alessandro (2017) | 1826 | 1817 | 2 | 0 | 1815 |
Bryk (2017) | 2090 | 2060 | 10 | 108 | 1942 |
Chu (2018) | 1853 | 1804 | 55 | 362 | 1387 |
1 as available in the article and/or in supplementary material
2 uniprot mapping returns all protein isoforms as one entry
The compilation of older studies can be retrieved from the Red Blood Cell Collection database.
The data and differentiation stages presented below come from the proteomic study and analysis performed by our partners of the GReX consortium, more details are available in their published work.
This protein is annotated as membranous in Gene Ontology, is annotated as membranous in UniProt.
(right-click above to access to more options from the contextual menu)
The reference OMIM entry for this protein is 607242
Aug. 19, 2019: Protein entry updated
Automatic update: Entry updated from uniprot information.
Feb. 2, 2018: Protein entry updated
Automatic update: Uniprot description updated
Dec. 19, 2017: Protein entry updated
Automatic update: Uniprot description updated
Nov. 23, 2017: Protein entry updated
Automatic update: Uniprot description updated
March 16, 2016: Protein entry updated
Automatic update: OMIM entry 607242 was added.