The protein contains 953 amino acids for an estimated molecular weight of 107142 Da.
The coatomer is a cytosolic protein complex that binds to dilysine motifs and reversibly associates with Golgi non-clathrin-coated vesicles, which further mediate biosynthetic protein transport from the ER, via the Golgi up to the trans Golgi network. Coatomer complex is required for budding from Golgi membranes, and is essential for the retrograde Golgi-to-ER transport of dilysine-tagged proteins. In mammals, the coatomer can only be recruited by membranes associated to ADP-ribosylation factors (ARFs), which are small GTP-binding proteins; the complex also influences the Golgi structural integrity, as well as the processing, activity, and endocytic recycling of LDL receptors. Plays a functional role in facilitating the transport of kappa-type opioid receptor mRNAs into axons and enhances translation of these proteins. Required for limiting lipid storage in lipid droplets. Involved in lipid homeostasis by regulating the presence of perilipin family members PLIN2 and PLIN3 at the lipid droplet surface and promoting the association of adipocyte surface triglyceride lipase (PNPLA2) with the lipid droplet to mediate lipolysis (By similarity). Involved in the Golgi disassembly and reassembly processes during cell cycle. Involved in autophagy by playing a role in early endosome function. Plays a role in organellar compartmentalization of secretory compartments including endoplasmic reticulum (ER)-Golgi intermediate compartment (ERGIC), Golgi, trans-Golgi network (TGN) and recyclin (updated: Oct. 10, 2018)
Protein identification was indicated in the following studies:
The following articles were analysed to gather the proteome content of erythrocytes.
The gene or protein list provided in the studies were processed using the ID mapping API of Uniprot in September 2018. The number of proteins identified and mapped without ambiguity in these studies is indicated below.
Only Swiss-Prot entries (reviewed) were considered for protein evidence assignation.
Publication | Identification 1 | Uniprot mapping 2 | Not mapped / Obsolete | TrEMBL | Swiss-Prot |
---|---|---|---|---|---|
Goodman (2013) | 2289 (gene list) | 2278 | 53 | 20599 | 2269 |
Lange (2014) | 1234 | 1234 | 7 | 28 | 1224 |
Hegedus (2015) | 2638 | 2622 | 0 | 235 | 2387 |
Wilson (2016) | 1658 | 1528 | 170 | 291 | 1068 |
d'Alessandro (2017) | 1826 | 1817 | 2 | 0 | 1815 |
Bryk (2017) | 2090 | 2060 | 10 | 108 | 1942 |
Chu (2018) | 1853 | 1804 | 55 | 362 | 1387 |
1 as available in the article and/or in supplementary material
2 uniprot mapping returns all protein isoforms as one entry
The compilation of older studies can be retrieved from the Red Blood Cell Collection database.
The data and differentiation stages presented below come from the proteomic study and analysis performed by our partners of the GReX consortium, more details are available in their published work.
This protein is annotated as membranous in Gene Ontology, is annotated as membranous in UniProt.
(right-click above to access to more options from the contextual menu)
The reference OMIM entry for this protein is 600959
June 30, 2020: Protein entry updated
Automatic update: OMIM entry 600959 was added.
Feb. 23, 2019: Protein entry updated
Automatic update: model status changed
Oct. 19, 2018: Additional information
Initial protein addition to the database. This entry was referenced in Bryk and co-workers. (2017).