The protein contains 200 amino acids for an estimated molecular weight of 22541 Da.
The small GTPases Rab are key regulators of intracellular membrane trafficking, from the formation of transport vesicles to their fusion with membranes (PubMed:21248164). Rabs cycle between an inactive GDP-bound form and an active GTP-bound form that is able to recruit to membranes different set of downstream effectors directly responsible for vesicle formation, movement, tethering and fusion (PubMed:21248164). That Rab is mainly involved in the biosynthetic transport of proteins from the Golgi to the plasma membrane (PubMed:21248164). Regulates, for instance, SLC2A4/GLUT4 glucose transporter-enriched vesicles delivery to the plasma membrane (By similarity). In parallel, it regulates the transport of TLR4, a toll-like receptor to the plasma membrane and therefore may be important for innate immune response (By similarity). Plays also a specific role in asymmetric protein transport to the plasma membrane (PubMed:16641372). In neurons, it is involved in axonogenesis through regulation of vesicular membrane trafficking toward the axonal plasma membrane (By similarity). In epithelial cells, it regulates transport from the Golgi to the basolateral membrane (PubMed:16641372). May play a role in the basolateral recycling pathway and in phagosome maturation (By similarity). May play a role in endoplasmic reticulum dynamics and morphology controlling tubulation along microtubules and tubules fusion (PubMed:23263280). Together with LRRK2, RAB8A, and RILPL1, it regulates ciliogenesis ( (updated: July 31, 2019)
Protein identification was indicated in the following studies:
The following articles were analysed to gather the proteome content of erythrocytes.
The gene or protein list provided in the studies were processed using the ID mapping API of Uniprot in September 2018. The number of proteins identified and mapped without ambiguity in these studies is indicated below.
Only Swiss-Prot entries (reviewed) were considered for protein evidence assignation.
Publication | Identification 1 | Uniprot mapping 2 | Not mapped / Obsolete | TrEMBL | Swiss-Prot |
---|---|---|---|---|---|
Goodman (2013) | 2289 (gene list) | 2278 | 53 | 20599 | 2269 |
Lange (2014) | 1234 | 1234 | 7 | 28 | 1224 |
Hegedus (2015) | 2638 | 2622 | 0 | 235 | 2387 |
Wilson (2016) | 1658 | 1528 | 170 | 291 | 1068 |
d'Alessandro (2017) | 1826 | 1817 | 2 | 0 | 1815 |
Bryk (2017) | 2090 | 2060 | 10 | 108 | 1942 |
Chu (2018) | 1853 | 1804 | 55 | 362 | 1387 |
1 as available in the article and/or in supplementary material
2 uniprot mapping returns all protein isoforms as one entry
The compilation of older studies can be retrieved from the Red Blood Cell Collection database.
The data and differentiation stages presented below come from the proteomic study and analysis performed by our partners of the GReX consortium, more details are available in their published work.
This protein is annotated as membranous in Gene Ontology.
(right-click above to access to more options from the contextual menu)
The reference OMIM entry for this protein is 612672
Aug. 20, 2019: Protein entry updated
Automatic update: Entry updated from uniprot information.
Feb. 2, 2018: Protein entry updated
Automatic update: Uniprot description updated
Dec. 19, 2017: Protein entry updated
Automatic update: Uniprot description updated
June 20, 2017: Protein entry updated
Automatic update: comparative model was added.
March 16, 2016: Protein entry updated
Automatic update: OMIM entry 612672 was added.