The protein contains 193 amino acids for an estimated molecular weight of 21768 Da.
Small GTPase which cycles between an active GTP-bound and an inactive GDP-bound state. Mainly associated with cytoskeleton organization, in active state binds to a variety of effector proteins to regulate cellular responses such as cytoskeletal dynamics, cell migration and cell cycle. Regulates a signal transduction pathway linking plasma membrane receptors to the assembly of focal adhesions and actin stress fibers (PubMed:8910519, PubMed:9121475, PubMed:31570889). Involved in a microtubule-dependent signal that is required for the myosin contractile ring formation during cell cycle cytokinesis (PubMed:16236794, PubMed:12900402). Plays an essential role in cleavage furrow formation. Required for the apical junction formation of keratinocyte cell-cell adhesion (PubMed:20974804, PubMed:23940119). Essential for the SPATA13-mediated regulation of cell migration and adhesion assembly and disassembly (PubMed:19934221). The MEMO1-RHOA-DIAPH1 signaling pathway plays an important role in ERBB2-dependent stabilization of microtubules at the cell cortex. It controls the localization of APC and CLASP2 to the cell membrane, via the regulation of GSK3B activity. In turn, membrane-bound APC allows the localization of the MACF1 to the cell membrane, which is required for microtubule capture and stabilization (PubMed:20937854). Regulates KCNA2 potassium channel activity by reducing its location at the cell surface in response to CHRM1 activation; promotes KCNA2 endocytosis (PubMed:9635436, P (updated: June 17, 2020)
Protein identification was indicated in the following studies:
The following articles were analysed to gather the proteome content of erythrocytes.
The gene or protein list provided in the studies were processed using the ID mapping API of Uniprot in September 2018. The number of proteins identified and mapped without ambiguity in these studies is indicated below.
Only Swiss-Prot entries (reviewed) were considered for protein evidence assignation.
Publication | Identification 1 | Uniprot mapping 2 | Not mapped / Obsolete | TrEMBL | Swiss-Prot |
---|---|---|---|---|---|
Goodman (2013) | 2289 (gene list) | 2278 | 53 | 20599 | 2269 |
Lange (2014) | 1234 | 1234 | 7 | 28 | 1224 |
Hegedus (2015) | 2638 | 2622 | 0 | 235 | 2387 |
Wilson (2016) | 1658 | 1528 | 170 | 291 | 1068 |
d'Alessandro (2017) | 1826 | 1817 | 2 | 0 | 1815 |
Bryk (2017) | 2090 | 2060 | 10 | 108 | 1942 |
Chu (2018) | 1853 | 1804 | 55 | 362 | 1387 |
1 as available in the article and/or in supplementary material
2 uniprot mapping returns all protein isoforms as one entry
The compilation of older studies can be retrieved from the Red Blood Cell Collection database.
The data and differentiation stages presented below come from the proteomic study and analysis performed by our partners of the GReX consortium, more details are available in their published work.
This protein is annotated as membranous in Gene Ontology, is annotated as membranous in UniProt.
(right-click above to access to more options from the contextual menu)
The reference OMIM entry for this protein is 165390
June 29, 2020: Protein entry updated
Automatic update: Entry updated from uniprot information.
July 4, 2019: Protein entry updated
Automatic update: Entry updated from uniprot information.
Feb. 10, 2018: Protein entry updated
Automatic update: Entry updated from uniprot information.
Feb. 2, 2018: Protein entry updated
Automatic update: Uniprot description updated
Dec. 19, 2017: Protein entry updated
Automatic update: Uniprot description updated
March 16, 2016: Protein entry updated
Automatic update: OMIM entry 165390 was added.
Jan. 28, 2016: Protein entry updated
Automatic update: model status changed
Jan. 25, 2016: Protein entry updated
Automatic update: model status changed