26S proteasome regulatory subunit 4 (PSMC1)

The protein contains 440 amino acids for an estimated molecular weight of 49185 Da.

 

Component of the 26S proteasome, a multiprotein complex involved in the ATP-dependent degradation of ubiquitinated proteins. This complex plays a key role in the maintenance of protein homeostasis by removing misfolded or damaged proteins, which could impair cellular functions, and by removing proteins whose functions are no longer required. Therefore, the proteasome participates in numerous cellular processes, including cell cycle progression, apoptosis, or DNA damage repair. PSMC1 belongs to the heterohexameric ring of AAA (ATPases associated with diverse cellular activities) proteins that unfolds ubiquitinated target proteins that are concurrently translocated into a proteolytic chamber and degraded into peptides. (updated: Nov. 22, 2017)

Protein identification was indicated in the following studies:

  1. Goodman and co-workers. (2013) The proteomics and interactomics of human erythrocytes. Exp Biol Med (Maywood) 238(5), 509-518.
  2. Lange and co-workers. (2014) Annotating N termini for the human proteome project: N termini and Nα-acetylation status differentiate stable cleaved protein species from degradation remnants in the human erythrocyte proteome. J Proteome Res. 13(4), 2028-2044.
  3. Hegedűs and co-workers. (2015) Inconsistencies in the red blood cell membrane proteome analysis: generation of a database for research and diagnostic applications. Database (Oxford) 1-8.
  4. Wilson and co-workers. (2016) Comparison of the Proteome of Adult and Cord Erythroid Cells, and Changes in the Proteome Following Reticulocyte Maturation. Mol Cell Proteomics. 15(6), 1938-1946.
  5. Bryk and co-workers. (2017) Quantitative Analysis of Human Red Blood Cell Proteome. J Proteome Res. 16(8), 2752-2761.
  6. D'Alessandro and co-workers. (2017) Red blood cell proteomics update: is there more to discover? Blood Transfus. 15(2), 182-187.
  7. Chu and co-workers. (2018) Quantitative mass spectrometry of human reticulocytes reveal proteome-wide modifications during maturation. Br J Haematol. 180(1), 118-133.

Methods

The following articles were analysed to gather the proteome content of erythrocytes.

The gene or protein list provided in the studies were processed using the ID mapping API of Uniprot in September 2018. The number of proteins identified and mapped without ambiguity in these studies is indicated below.
Only Swiss-Prot entries (reviewed) were considered for protein evidence assignation.

PublicationIdentification 1Uniprot mapping 2Not mapped /
Obsolete
TrEMBLSwiss-Prot
Goodman (2013)2289 (gene list)227853205992269
Lange (2014)123412347281224
Hegedus (2015)2638262202352387
Wilson (2016)165815281702911068
d'Alessandro (2017)18261817201815
Bryk (2017)20902060101081942
Chu (2018)18531804553621387

1 as available in the article and/or in supplementary material
2 uniprot mapping returns all protein isoforms as one entry

The compilation of older studies can be retrieved from the Red Blood Cell Collection database.

The data and differentiation stages presented below come from the proteomic study and analysis performed by our partners of the GReX consortium, more details are available in their published work.

No sequence conservation computed yet.

Interpro domains
Total structural coverage: 100%
Model score: 0
No model available.

(right-click above to access to more options from the contextual menu)

Biological Process

Anaphase-promoting complex-dependent catabolic process GO Logo
Antigen processing and presentation of exogenous peptide antigen via MHC class I GO Logo
Antigen processing and presentation of exogenous peptide antigen via MHC class I, TAP-dependent GO Logo
Antigen processing and presentation of peptide antigen via MHC class I GO Logo
Apoptotic process GO Logo
Cellular nitrogen compound metabolic process GO Logo
DNA damage response, signal transduction by p53 class mediator resulting in cell cycle arrest GO Logo
Fc-epsilon receptor signaling pathway GO Logo
G1/S transition of mitotic cell cycle GO Logo
Gene expression GO Logo
Interleukin-1-mediated signaling pathway GO Logo
MAPK cascade GO Logo
Mitotic cell cycle GO Logo
Negative regulation of apoptotic process GO Logo
Negative regulation of canonical Wnt signaling pathway GO Logo
Negative regulation of G2/M transition of mitotic cell cycle GO Logo
Negative regulation of neuron death GO Logo
NIK/NF-kappaB signaling GO Logo
Obsolete negative regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle GO Logo
Obsolete positive regulation of ubiquitin-protein ligase activity involved in regulation of mitotic cell cycle transition GO Logo
Obsolete regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle GO Logo
Positive regulation of canonical Wnt signaling pathway GO Logo
Positive regulation of RNA polymerase II transcription preinitiation complex assembly GO Logo
Post-translational protein modification GO Logo
Pre-replicative complex assembly GO Logo
Proteasome-mediated ubiquitin-dependent protein catabolic process GO Logo
Protein catabolic process GO Logo
Protein deubiquitination GO Logo
Protein folding GO Logo
Protein polyubiquitination GO Logo
Regulation of apoptotic process GO Logo
Regulation of cellular amino acid metabolic process GO Logo
Regulation of hematopoietic stem cell differentiation GO Logo
Regulation of mitotic cell cycle phase transition GO Logo
Regulation of mRNA stability GO Logo
Regulation of transcription from RNA polymerase II promoter in response to hypoxia GO Logo
SCF-dependent proteasomal ubiquitin-dependent protein catabolic process GO Logo
Small molecule metabolic process GO Logo
Stimulatory C-type lectin receptor signaling pathway GO Logo
T cell receptor signaling pathway GO Logo
Transmembrane transport GO Logo
Tumor necrosis factor-mediated signaling pathway GO Logo
Ubiquitin-dependent ERAD pathway GO Logo
Viral process GO Logo
Wnt signaling pathway, planar cell polarity pathway GO Logo

The reference OMIM entry for this protein is 602706

Proteasome 26s subunit, atpase, 1; psmc1
Protease 26s, subunit 4; s4

DESCRIPTION

Ubiquitinated proteins are degraded by a 26S ATP-dependent protease. The protease is composed of a 20S catalytic proteasome and 2 PA700 regulatory modules. The PA700 complex is composed of multiple subunits, including at least 6 related ATPases, including PSMC1, and approximately 15 non-ATPase polypeptides. Each of the 6 ATPases, namely PSMC1, PSMC2 (154365), PSMC3 (186852), PSMC4 (602707), PSMC5 (601681), and PSMC6 (602708), contains an AAA (ATPases associated with diverse cellular activities) domain (summary by Tanahashi et al., 1998).

CLONING

Dubiel et al. (1992) cloned cDNAs encoding subunit 4 (S4) of the 26S protease by screening a HeLa cell cDNA library with probes that were produced using the protein sequence. The 440-amino acid protein has a molecular mass of 51 kD by SDS-PAGE. Hoyle and Fisher (1996) found that the human and mouse PSMC1 proteins have 99% amino acid identity.

GENE FUNCTION

Spinocerebellar ataxia type 7 (SCA7; 164500) is a neurodegenerative disorder characterized by ataxia and selective neuronal cell loss caused by the expansion of a translated CAG repeat encoding a polyglutamine tract in ataxin-7, the SCA7 gene product. Matilla et al. (2001) used a 2-hybrid assay to show that ataxin-7 interacts with the ATPase subunit S4 of the 19S regulatory complex of the 26S proteasome. The ataxin-7/S4 association was modulated by the length of the polyglutamine tract, whereby S4 showed a stronger association with the wildtype allele of ataxin-7. Endogenous ataxin-7 localized to discrete nuclear foci that also contained additional components of the proteasomal complex. Immunohistochemical analyses suggested alterations either of the distribution or the levels of S4 immunoreactivity in neurons that degenerate in SCA7 brains. Immunoblot analyses demonstrated reduced levels of S4 in SCA7 cerebella without evident alterations in the levels of other proteasome subunits. The authors suggested a role for S4 and ubiquitin-mediated proteasomal proteolysis in the molecular pathogenesis of SCA7.

MAPPING

By fluorescence in situ hybridization, Tanahashi et al. (1998) mapped the human PSMC1 gene to chromosome 19p13.3. However, Gross (2011) mapped the PSMC1 gene to chromosome 14q32.11 based on an alignment of the PSMC1 sequence (GenBank GENBANK BT009826) with the genomic sequence (GRCh37). By analysis of an interspecific backcross, Hoyle and Fisher (1996) mapped the mouse Psmc1 gene to chromosome 12.

NOMENCLATURE

The PSMC1 gene product, which Dubiel et al. (1992) called subunit 4 (S4), is distinct from the PSMC4 (602707) gene product. ... More on the omim web site

Subscribe to this protein entry history

Feb. 5, 2018: Protein entry updated
Automatic update: Entry updated from uniprot information.

Feb. 2, 2018: Protein entry updated
Automatic update: Uniprot description updated

Dec. 19, 2017: Protein entry updated
Automatic update: Uniprot description updated

Nov. 23, 2017: Protein entry updated
Automatic update: Uniprot description updated

March 15, 2016: Protein entry updated
Automatic update: OMIM entry 602706 was added.