Membrane-associated progesterone receptor component 2 (PGRMC2)

The protein contains 223 amino acids for an estimated molecular weight of 23818 Da.

 

Required for the maintenance of uterine histoarchitecture and normal female reproductive lifespan (By similarity). May serve as a universal non-classical progesterone receptor in the uterus (Probable). Intracellular heme chaperone required for delivery of labile, or signaling heme, to the nucleus (By similarity). Plays a role in adipocyte function and systemic glucose homeostasis (PubMed:28111073). In brown fat, which has a high demand for heme, delivery of labile heme in the nucleus regulates the activity of heme-responsive transcriptional repressors such as NR1D1 and BACH1 (By similarity). (updated: Oct. 7, 2020)

Protein identification was indicated in the following studies:

  1. Goodman and co-workers. (2013) The proteomics and interactomics of human erythrocytes. Exp Biol Med (Maywood) 238(5), 509-518.
  2. Lange and co-workers. (2014) Annotating N termini for the human proteome project: N termini and Nα-acetylation status differentiate stable cleaved protein species from degradation remnants in the human erythrocyte proteome. J Proteome Res. 13(4), 2028-2044.
  3. Hegedűs and co-workers. (2015) Inconsistencies in the red blood cell membrane proteome analysis: generation of a database for research and diagnostic applications. Database (Oxford) 1-8.
  4. Wilson and co-workers. (2016) Comparison of the Proteome of Adult and Cord Erythroid Cells, and Changes in the Proteome Following Reticulocyte Maturation. Mol Cell Proteomics. 15(6), 1938-1946.
  5. Bryk and co-workers. (2017) Quantitative Analysis of Human Red Blood Cell Proteome. J Proteome Res. 16(8), 2752-2761.
  6. D'Alessandro and co-workers. (2017) Red blood cell proteomics update: is there more to discover? Blood Transfus. 15(2), 182-187.
  7. Chu and co-workers. (2018) Quantitative mass spectrometry of human reticulocytes reveal proteome-wide modifications during maturation. Br J Haematol. 180(1), 118-133.

Methods

The following articles were analysed to gather the proteome content of erythrocytes.

The gene or protein list provided in the studies were processed using the ID mapping API of Uniprot in September 2018. The number of proteins identified and mapped without ambiguity in these studies is indicated below.
Only Swiss-Prot entries (reviewed) were considered for protein evidence assignation.

PublicationIdentification 1Uniprot mapping 2Not mapped /
Obsolete
TrEMBLSwiss-Prot
Goodman (2013)2289 (gene list)227853205992269
Lange (2014)123412347281224
Hegedus (2015)2638262202352387
Wilson (2016)165815281702911068
d'Alessandro (2017)18261817201815
Bryk (2017)20902060101081942
Chu (2018)18531804553621387

1 as available in the article and/or in supplementary material
2 uniprot mapping returns all protein isoforms as one entry

The compilation of older studies can be retrieved from the Red Blood Cell Collection database.

The data and differentiation stages presented below come from the proteomic study and analysis performed by our partners of the GReX consortium, more details are available in their published work.

No sequence conservation computed yet.

This protein is predicted to be membranous by TOPCONS.


Interpro domains
Total structural coverage: 45%
Model score: 0
No model available.

(right-click above to access to more options from the contextual menu)

The reference OMIM entry for this protein is 607735

Progesterone receptor membrane component 2; pgrmc2

CLONING

Using the sequence of a porcine progesterone receptor as probe, Gerdes et al. (1998) cloned PGRMC2, which they designated DG6. The deduced protein contains 223 amino acids and has an N-terminal hydrophobic region. It has no N-glycosylation site. PGRMC2 shares about 50% identity overall with PGRMC1 (300435), and they share 68% identity in their C termini, including a highly conserved 58-amino acid sequence. Northern blot analysis revealed expression of 2.0-kb transcripts in all tissues examined, with highest expression in placenta. Transcripts of 3.0 and 5.0 kb were also detected.

MAPPING

By genomic sequence analysis, Gerdes et al. (1998) mapped the PGRMC2 gene to chromosome 4q26. ... More on the omim web site

Subscribe to this protein entry history

Oct. 20, 2020: Protein entry updated
Automatic update: Entry updated from uniprot information.

April 25, 2020: Protein entry updated
Automatic update: Entry updated from uniprot information.

Feb. 2, 2018: Protein entry updated
Automatic update: Uniprot description updated

Dec. 19, 2017: Protein entry updated
Automatic update: Uniprot description updated

Nov. 23, 2017: Protein entry updated
Automatic update: Uniprot description updated

March 16, 2016: Protein entry updated
Automatic update: OMIM entry 607735 was added.